

United States Nuclear Data Program

Annual Report for FY2022

This document describes the activities including related metrics performed by the US Nuclear Data Program members during Fiscal Year 2022.

Prepared by

David Brown National Nuclear Data Center Brookhaven National Laboratory

With contributions from

Lee Bernstein, UCB/LBNL Jun Chen, MSU John Kelley, TUNL Filip G. Kondev, ANL Hye Young Lee, LANL Elizabeth McCutchan, BNL Ninel Nica, TAMU Michael Smith, ORNL Ian Thompson, LLNL

and the entire USNDP

Contents

Acknowledgements
JSNDP Membershipvii
. Introduction
I. Network Coordination and Data Dissemination 4
National and International Coordination 4
USNDP Databases
Data Dissemination5
Major Publications
II. Nuclear Structure and Decay Data
Status of ENSDF
Status of XUNDL
Status of NSR7
Horizontal Evaluations and Other Data Related Activities
Status of ENSDF Codes
V. Nuclear Reaction Data
Nuclear Astrophysics Highlights 11
JSNDP Collaborative Projects 13
JSNDP Staffing Table FY 2022 14
JSNDP FTE Plots FY 2022 15
Detailed Status of the Work Plan – Fiscal Year 2022 Report17
L NNDC Facility Operation 17
A. Management
<u>B.</u> Library
C. Computer Operation 17
II. Coordination
A. National Coordination
B. International Coordination19
III. Nuclear Physics Databases 20
<u>A.</u> Nuclear Science References (NSR) 20
<u>B.</u> Experimental Nuclear Structure Data (XUNDL)
<u>C.</u> Evaluated Nuclear Structure Data File (ENSDF) 20

[<u>D.</u> Numerical Nuclear Data (NuDat)	21
Ē	E. Experimental Reaction Data File (EXFOR)	21
Ē	E. Evaluated Nuclear Data File (ENDF)	21
<u>(</u>	G. Database Software Maintenance	22
ŀ	H. Future Database Systems Development	22
<u>IV.</u>	Information Dissemination	22
A	A. Nuclear Data Sheets	22
Ē	3. Customer Services	23
<u>(</u>	C. Web Site Maintenance	23
<u>V.</u>	Nuclear Structure Physics	24
4	A. NSR Abstract Preparation	24
Ē	3. Compilation of Experimental Nuclear Structure Data	24
<u>(</u>	C. A-Chains and Nuclides Evaluations for ENSDF	26
[<u>D.</u> Ground and Metastable State Properties	27
E	E. Non-ENSDF Decay Data Evaluations	28
Ē	E. Neutron-induced g-Ray Data Evaluation	28
<u>(</u>	G. Nuclear Structure Data Measurements	29
Ŀ	H. ENSDF Physics and Checking Codes	29
<u>VI.</u>	Nuclear Reaction Physics	30
4	A. Experimental Data Compilation	30
Ē	3. ENDF Manuals and Documentation	30
<u>(</u>	C. ENDF Evaluations	31
<u>[</u>	<u>D.</u> Nuclear Reaction Standards	32
Ē	E. Nuclear Model Development	34
Ē	F. Nuclear Reaction Data Measurements	34
<u>(</u>	G. Astrophysics Nuclear Data Needs	35
ŀ	H. Covariances Development	36
<u> </u>	. Reactor Antineutrino Spectra and Decay Heat Calculations	36
Ī	I. Verification and Validation	37
Appendix	x A – Additional Funding Sources	38
Appendix	x B – Non-USNDP funded nuclear data work	40
Appendix	x C – Fiscal Year 2022 Articles authored by USNDP staff	42

Acknowledgements

Work at Argonne National Laboratory was sponsored by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357.

Work at Brookhaven National Laboratory was supported by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy under Contract No. DE-SC0012704.

Work at Lawrence Berkeley National Laboratory was supported by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Work at Lawrence Livermore National Laboratory was supported by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy under Contract No. DE-AC52-07NA27344.

Work at Los Alamos National Laboratory was supported by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy. Los Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy (Contract No. 89233218CNA000001).

Work at Michigan State University was supported by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy under Contract No. DE-SC0016948.

Work at Oak Ridge National Laboratory was supported by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

Work at Texas A&M University was supported by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy under Contract No. DE-FG02-93ER40773.

Work at Triangle Nuclear Laboratory was supported by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy under Contract Nos. DE-FG02-97ER41033 (Duke University) and DE-FG02-97ER41042 (North Carolina State University).

USNDP Membership

Argonne National Laboratory

Filip Kondev (PI) Daniel Burdette Nathan Callahan Soumen Nandi

Brookhaven National Laboratory

David Brown (PI) Ramon Arcilla Allan Carlson (NIST (ret.), contractor) Emanuel Chimanski Olena Gritzay Stanislav Hlavac (contractor) Sam Kim Letty Krejci Amber Lauer-Coles Donnie Mason Andrea Mattera Elizabeth McCutchan **Christopher Morse Gustavo Nobre Boris Pritychenko** Shuya Ota Otto Schwerer (contractor) Balraj Singh (U. McMaster (ret.), contractor) Benjamin Shu Dmitro Symochko (contractor) JoAnn Totans Matteo Vorabbi Jin Wu Shaofei Zhu (deceased)

Lawrence Berkeley National Laboratory

Lee Bernstein (PI) Shamsu Basunia Jon Batchelder (UC, Berkeley) Bethany Goldblum Aaron Hurst (UC, Berkeley) Walid Younes (LLNL (ret.), contractor)

Lawrence Livermore National Laboratory

Ian Thompson (PI)

Los Alamos National Laboratory

Hye Young Lee (PI) Toshihiko Kawano Michal Herman Sean Kuvin Panos Gastis

Michigan State University Jun Chen (PI)

Oak Ridge National Laboratory

Michael Smith (PI) Murry Martin (contractor) Caroline Nesaraja Larry Zhang (student) Eric Lingerfelt (contractor)

Texas A&M University

Ninel Nica

Triangle University Nuclear Laboratory

John Kelley (PI) Jim Purcell (contractor) Grace Sheu

I. Introduction

The US Nuclear Data Program (USNDP) Annual Report for Fiscal Year 2022 (FY22) summarizes the work of USNDP for the period of October 1, 2021 through September 30, 2022, with respect to the Work Plan for FY22 that was prepared in 2020. The Work Plan and Final Report for USNDP are prepared for the DOE Office of Science, Office of Nuclear Physics. The support for the nuclear data activity from sources outside the nuclear data program is described in the staffing table and in Appendix A. Much of this is a direct result of NDIAWG associated funding. This leverage is significant in FY22 and amounts to about 14.5 FTE scientific, to be compared with 25.83 FTEs at USNDP units funded by the DOE Office of Science, Office of Nuclear Physics. Since it is often difficult to separate accomplishments funded by various sources, some of the work reported in the present report was accomplished with nuclear data program support leveraged by other funding.

FY22 was the 23rd year in which the USNDP has operated under a Work Plan developed by the program participants. The program continued to carry out important work in support of the DOE mission. The work balances the ongoing collecting, analyzing, and archiving of nuclear physics information critical to basic nuclear research and to the development and improvement of nuclear technologies with the electronic distribution of this information to users in a timely and easily accessible manner. The present section of the report consists of activity summaries for the major components of the USNDP. This is followed by an updated staff level assignment table that reflects the final distribution of effort among the tasks carried out during FY22. Then, we continue with the detailed status of work performed during FY22.

In terms of personnel changes, the USNDP has undergone several changes in FY22:

- Emanuel Chimanski joined the NNDC as a post-doc in April 2022,
- Panagiotis Gastis was converted from a postdoc to staff at LANL in Aug. 2022
- Adam Hayes left the NNDC to work in the private sector in January 2022,
- Samuel Kim joined the NNDC as a post-doc in March 2022,
- Shuya Ota joined the NNDC as scientific staff in May 2022,
- Jagdish Tuli left LBNL as an ENSDF contractor
- Matteo Vorabbi left the NNDC to become a Lecturer at the University of Surrey, UK, in September 2022
- Walid Younes joined LBNL as a Natural Language Processing contractor
- Jin Wu joined the NNDC as scientific staff in September 2022
- Shaofei Zhu passed away in November 2021

Table 1 summarizes the USNDP metrics since 2001. Table 2 shows the breakdown of the metrics by laboratory for the reported fiscal year and comparison with the previous fiscal year. The tables are followed by a definition of each metric and any comments pertaining to the metrics.

Fiscal year	USNDP funding	Change (%)	Compilations	Evaluations	Disseminations (in thousands)	Articles	Invited talks
	(\$К)						
2001			7,139	334	667	25	22
2002	4,890		6,159	300	799	40	22
2003	4,932	+0.9	4,975	260	966	40	23
2004	5,015	+1.7	6,241	276	1,212	36	43
2005	5,437	+8.4	6,623	422	1,642	59	42
2006	5,099	-6.6	4,936	318	1,863	60	48
2007	5,841	+14.6	5,355	366	2,239	56	51
2008	5,967	+2.2	5,104	385	2,996	72	68
2009	6,267	+5.0	4,047	400	3,294	61	56
2010	6,549	+4.5	4,662	395	2,843	83	51
2011	6,534	-0.2	4,662	479	3,252	96	67
2012	6,785	+3.8	5,221	209	3,013	90	48
2013	6 <i>,</i> 249 [*]	-7.9	4,925	282	3,447	84	79
2014	7 <i>,</i> 032 [*]	+12.5	3,738	166	3,411	107	81
2015	7 <i>,</i> 381 [*]	+5.0	4,949	271	4,246	98	50
2016	7 <i>,</i> 597 [*]	+2.9	3,936	375	4,655	82	72
2017	6,953	-8.5	3,684	404	4,730	95	51
2018	8,496ª	+22.2	4,097	221	4,722	79	58
2019	8,797 ^b	+3.5	3,663	203	5,148	67	60
2020	9,344 ^c	+6.2	3,603	159	5,678	63	49
2021	9,435 ^d	+0.99	5,380	273	7,297	71	59
2022	10,290 ^e	+9.06	3,988	292	9,016	71	71

Table 1: Summary of the USNDP funding and metrics.

*: It includes \$500K of Early Career Award (LANL).

b: It includes the following (a) FIRE collaboration funding \$100 (LLNL), (b) LAB17 call funding: \$325K (ANL), \$220K (LANL), (c) LAB18 call funding \$27K (ANL), \$289K (BNL), \$120K (LANL), \$75K (LBNL), \$50K (LLNL), \$373K (ORNL), (d) WANDA organization: \$25K (ORNL).

c: It includes the following (a) FIRE collaboration funding \$100 (LLNL); (b) LAB calls funding: \$354K (ANL), \$619K (BNL), \$120K (LANL), \$75K (LBNL), \$50K (LLNL) and \$375K (ORNL); (c) WANDA organization: \$150K (ORNL) and \$20K (LLNL).

d: It includes the following (a) FIRE collaboration funding \$100 (LLNL); (b) LAB calls funding: \$950K (ANL), \$717K (BNL), and \$173K (ORNL).

e: (b) LAB calls funding: \$950k (ANL)

a: It includes the following (a) FIRE collaboration funding \$100 (LLNL), (b) LAB17 call funding: \$325K (ANL), \$220K (LANL), (c) LAB18 call funding \$26K (ANL), \$282K (BNL), \$120K (LANL), \$75K (LBNL), \$100K (LLNL), \$372K (ORNL).

Laboratory	Comp	oilations	Evalu	luations Disseminations Articles (In thousands)			Invited Talks			
	2021	2022	2021	2022	2021	2022	2021	2022	2021	2022
ANL	0	0	13	12	-	-	14	15	6	5
BNL*	5,291	3 <i>,</i> 907	181.1	148.5	5,426.5	9015.6	22	20	16	36
LANL	-	-	0.7	26	-	-	8	9	13	7
LBNL	0	0	24.5	22	7.5	7.5	19	20	12	14
LLNL	-	-	0	0	-	-	1	1	6	6
MSU	50	40	25.5	24	-	-	4	4	1	2
ORNL	-	-	8	9	1,979.5	2,983	4	5	5	5
TAMU	3	1	17	17	-	-	5	1	0	0
TUNL	36	40	3	7	40	57	1	0	0	0
Total	5,380	3,988	273	265	7,453.5	7,453.5	71	71	59	71

Table 2: USNDP metrics in the last two fiscal years, numbers from the previous fiscal year are shown forcomparison.

*: BNL compilations consist of (a) 3,284 NSR articles, including keywords for 2,391 of them; (b) 368 articles for EXFOR; (c) 187 articles encompassing 336 XUNDL datasets. BNL evaluations consist of (a) 139 nuclides for ENSDF and 9.5 for ENDF/B. For the remaining groups, all compilations are for XUNDL, while all evaluations are either ENSDF (ANL, LBNL, MSU, ORNL and TAMU) or ENDF/B (LANL, LLNL).

Metric definitions and comments:

- 1. **Compilations**: The sum of the new entries added to the USNDP bibliographic (NSR articles) and experimental databases (EXFOR reactions, XUNDL structure data sets). The compilation activities are on a healthy situation, and these databases are updated regularly with newly published material.
- Evaluations: The sum of new evaluations submitted or accepted for inclusion in the USNDP evaluated nuclear databases. For ENSDF, it is the number of evaluated nuclides, while for ENDF, it is the number of evaluated reactions/covariances. There were 230 ENSDF evaluations and 9.5 ENDF/B evaluations submitted. The number of ENSDF evaluations remains well below the number needed, about 340, to evaluate each of the ENSDF nuclides on average every 10 years.
- 3. **Dissemination**: The number of electronic data retrievals made from USNDP maintained web sites. Data retrieval is defined as a request for data from any of the databases that receives a result. Total pages accessed is not tallied.
- 4. **Articles**: The number of articles published in refereed journals. The number of articles per FTE has remained relatively constant in the last few years, but the number of FTEs in the USNDP has grown. A selected list of articles published is given in the Appendix C.
- **5. Invited talks**: The number of presentations given at the explicit invitation of the organizers of conferences, symposia, workshops, and training courses. The number of invited talks has not changed significantly from last year's value.

II. Network Coordination and Data Dissemination

The National Nuclear Data Center (NNDC) continues to serve as the core facility of the U.S. Nuclear Data Program (USNDP). It has the main responsibility for national and international coordination, database maintenance, and data dissemination. However, other program participants are also involved in coordination and dissemination activities.

National and International Coordination

The NNDC, while serving as the secretariat for the program, has prepared the Work Plan for this fiscal year in cooperation with the members of the Coordinating Committee. The NNDC Head serves as the chair of the USNDP Coordinating Committee, which consists of the Principal Investigators from each of the participating group and chairs the annual meeting of the program held at BNL. A representative from LANL chairs the Nuclear Reaction Data Working Group, and a representative from TUNL chairs the Nuclear Structure Working Group. ORNL chairs the Astrophysics Task Force.

On February 15, 2022, the DOE Office of Nuclear Physics conducted its annual Budget Briefing. Lee Bernstein, David Brown, Jun Chen, Martin Schoonen, John Kelley, Filip Kondev, Hye Young Lee, Elizabeth McCutchan, Ninel Nica, Michael Smith, Alejandro Sonzogni and Ian Thompson represented USNDP and made the case for the FY24 funding.

The NNDC serves as the focal point for U.S. collaboration in international nuclear data activities. This collaboration continued both in nuclear structure and decay data (Network of Nuclear Structure and Decay Data Evaluators, NSDD) and reaction data (NEA Working Party on International Nuclear Data Evaluation, WPEC, and Network of Nuclear Reaction Data Centers, NRDC).

The NNDC continues to chair the Cross Section Evaluation Working Group (CSEWG), which produces the ENDF/B evaluated nuclear data library for nuclear science and applied nuclear technology use. Due to the ongoing COVID-19 pandemic, the 2021 CSEWG meeting was held virtually but hosted by BNL. The major topics of the CSEWG meeting was feedback on the recently released ENDF/B-VIII.0 library and next release of the VIII.1 version, now scheduled for February 2024. Additionally, there were presentations about the fission yield evaluation project funded by NA-22.

The USNDP also continues to play a leading role in the annual Workshop for Applied Nuclear Data Activities (WANDA) conference series, with the inaugural workshop held in Washington, DC in 2019 organized by LBNL. WANDA 2022 was held virtually with several USNDP members serving as speakers and session organizers.

USNDP Databases

The NNDC operates several Dell servers running the Linux operating system to support its compilation, evaluation, database maintenance, and information dissemination functions. These computers archive and serve the nuclear data produced by USNDP and the data obtained by other national and international collaborations. In addition, the NNDC maintains the collaboration GitLab server that facilitates data and codes development and keeps track of changes. The NNDC maintains seven nuclear physics databases for USNDP, which were updated continuously this fiscal year with new and revised information from efforts of the NNDC, USNDP and international collaborators. Distributions of all or parts of these databases have been made to national and international collaborators as scheduled.

Data Dissemination

There were 9,015 million database retrievals this fiscal year, about 24% higher than the number of retrievals in the previous year. This reflects a significant increase in traffic to the NNDC due to the significant update to NuDat. This increase is all the more impressive when one realizes that several NNDC webapps had to be disabled for cybersecurity reasons.

Major Publications

USNDP continues to publish the refereed journal Nuclear Data Sheet: eight issues were published this fiscal year.

III. Nuclear Structure and Decay Data

The nuclear structure working group emphasizes the evaluation of measured nuclear structure and decay properties for all isotopes. These data are maintained at the NNDC in the Evaluated Nuclear Structure Data File (ENSDF). Production of ENSDF is an international effort operating under the auspices of the IAEA Nuclear Structure & Decay Data (NSDD) network. ENSDF is an important source of information for derivative databases and applications, including NuDat, Nuclear Wallet Cards, RIPL, MIRD and ENDF/B. Evaluations are published as peer-reviewed articles in the Nuclear Data Sheets. The Nuclear Science Reference (NSR) and Experimental Unevaluated Nuclear Structure Data List (XUNDL) databases have been kept current. The combination of ENSDF and XUNDL databases represents a nearly complete literature coverage of experimental nuclear structure data, which is a salient feature of these databases.

In August 2022, a breakout session related to Nuclear Data was part of the Low-Energy Community Meeting; the session featured several presentations from researchers associated with the USNDP and others who are active in the low-energy nuclear physics community. A similar session was requested by the conveners of the "Nuclear Structure, Nuclear reactions and Nuclear Astrophysics" town hall meeting who are gathering community input to guide their writing of the next "Long Range Plan for Nuclear Science". The town hall meeting was organized by community researchers including many from the USNDP, and it comprised a collection of invited and contributed talks.

Status of ENSDF

ENSDF evaluations submitted to the database are consistent with metrics from the previous year, with 224 nuclide submissions. The evaluations were a combination of nuclides resulting from mass chain evaluations (15 mass chains in total) along with single nuclide submissions.

All evaluations were received from USNDP-funded centers, marking a second year with no contributions from the international community. Per the USNDP Nuclear Data Advisory Committee (NDAC) recommendations, USNDP leadership reached out to International Union of Pure and Applied Physics (IUPAP) and presented a case for more international involvement in ENSDF at their annual meeting.

A Nuclear Data Inter-Agency Working Group (NDIAWG)-funded effort to modernize the ENSDF database was initiated in FY21. Since then, a new object-oriented database format based on JavaScript Object Notation (JSON) has been developed to serve as the updated medium for storing ENSDF data. Conversion from the 80-column format to JSON is ongoing, with migration of several types of datasets already completed. In addition, automated validation of the data after conversion is being implemented to ensure the accuracy of the conversion process, with the side effect that many small mistakes in the current files are caught and can be corrected during conversion.

Status of XUNDL

Based on regular scanning of nuclear physics journals, 606 datasets were compiled from 336 articles. The project to compile and carry out physics checks on the data from nuclear structure manuscripts submitted to Phys. Rev. C and European Physical Journal A continues.

Status of NSR

In FY2022, 3,284 new articles were added to the NSR database. USNDP contributions are from B. Pritychenko (manager), J. Totans, B. Singh, D. Symochko (NNDC) with international input from V. Zerkin and L. Vrapcenjak (IAEA). The database is current and in good shape. The number of NSR web retrievals was 1,035,004, a substantial increase over FY21 that reflects a combination of NucScholar related access from LBNL and library scanning activities at BNL.

Horizontal Evaluations and Other Data Related Activities

A summary list of "Horizontal Evaluations and Other Data Related Activities" involving USNDP structure evaluators includes the following:

- *IAEA-CRP evaluation of fission yields:* A. Sonzogni, A. Mattera, E. McCutchan, B. Pritychenko, T. Kawano, F. Kondev continuing.
- IAEA-led activities on improving ENSDF codes: J. Chen, F. Kondev, B. Singh continuing.
- IAEA-ICTP organized workshops: S. Basunia, J. Chen, E. McCutchan, F. Kondev, B. Singh.
- The Atomic Mass Evaluation (AME) and the evaluation of basic nuclear physics properties for ground states and isomers (NUBASE): F. Kondev continuing.
- Update of r0 radius parameter and revision of ALPHAD-radD analysis code: B. Singh. ALPHAD and ALPHAD-RadD codes available in November 2020; even-even r0 parameter evaluation published in NDS (2020Si16). This work was done in collaboration with Drs. S. Singh and S. Kumar, Akal University, India, and with Dr. A.K. Jain, Amity University, Noida, India.
- Modernization of ALPHAD-radD analysis code: J. Chen, B. Singh. A new Java code AlphaHF developed and completed to replace the legacy ALPHAD-radD fortran, which uses even-even r0 parameters from 2020Si16 in NDS. Update of r0 parameter to include new papers on even-even alpha decays and from 2020 to 2023 and to incorporate data in AME2020 is continuing. The updated evaluation of alpha-decay data for even-even nuclei, and anticipated publication of a paper on updated r0 parameters is being done in collaboration with Drs. S. Singh and S. Kumar, Akal University, India,
- *IAEA-led decay data library for monitoring applications*: J. Chen, F. Kondev, B. Singh, J. Tuli continuing.
- Compilation of current papers on mass measurements on an annual basis and make data file available on nuclearmasses.org: B. Singh. Compiled file for 2020-2022 was submitted Nov 2022 and is available on nuclearmasses.org webpage. Work is continuing for 2023 update.
- IAEA-CRP on Delayed Neutron Emission Probabilities: Reference database at IAEA-NDS: B. Singh, E. McCutchan, A. Sonzogni – completed, two articles published in NDS. Updates for Z>28 region completed in Jan 2021. Update for Z=2-28 nuclei in progress: B. Singh. This work is being done in collaboration with Drs. P. Dimitriou and M. Verpelli, IAEA-NDS.
- *WalletCraft:* Object-oriented database for ground and long-lived isomeric properties: E. McCutchan, B. Shu, A. Sonzogni continuing.
- Atlas of Isomers project: B. Singh update of 2015Ja04 Atlas has been completed with updated version to cover literature up to Oct 2022 for isomers of half-life ≥10 ns, in addition to reevaluation of half-lives and isomer energies. Paper has now appeared in ADNDT (Jan-Feb 2023 issue). This work was done in collaboration with Drs. S. Garg and Y. Sun, University of Shanghai, Dr. B. Maheshwari, University of Zagreb, and Drs. A.K. Jain and A. Goel, Amity University, Noida, India. Work is continuing for isomers in the half-life range of 0.1-10 ns.

- Update of 1998Si17 Review of log ft values: B. Singh all the beta decay schemes available up to the December 2022 version of ENSDF and from significant newer literature were considered, updated for AME-2020 Q values. All the files have been run through new BetaShape code for log ft values. Filtering codes developed at Dresden have been executed. A paper is nearly ready for submission in February 2023. This work is being carried out in collaboration with Dr. X. Mougeot, CEA, Saclay, Mr. S. Turkat and Prof. K. Zuber, TU, Dresden.
- Update of 2000Am02 magnetic dipole rotational bands: B. Singh this work has now evolved to compilation of multi-qp high-spin dipole bands with dominant M1 transitions, which is a much larger project continuing. This work is being done in collaboration with Drs. S. Singh and S. Kumar, Akal University, India, and Dr. A.K. Jain, Amity University, Noida, India
- **B(E2)** project for first 2+ and 4+ states of all the even-even nuclei: B. Pritychenko and B. Singh. Work on the first 2+ states was published in 2016Pr01: ADNDT. The on-going project is an update of the 2016 work as well as first evaluation of B(E2) values for the first 4+ to first 2+ states.
- Gamma-ray transition probabilities for all experimentally known multipolarities for all the nuclei: J. Chen and B. Singh update of Endt's work of the 70's. This project has started recently and will take two-three years to complete.
- **Proton Radioactivity:** B. Singh, J. Chen, A.A. Sonzogni: compilation and evaluation of known 1p and 2p decays of nuclei on drip lines, about 1-2 year project started Dec 2022.

Status of ENSDF Codes

Jun Chen continues developing new analysis and utility codes used by ENSDF evaluators, and he is implementing modern programming for legacy codes.

Updates continue for the McMaster-MSU JAVA-NDS code that has been used both to produce print-ready documents for the Nuclear Data Sheets and for retrievals of ENSDF data sets at the NNDC website. The Java toolkit ConsistencyCheck has been developed and completed to ensure evaluation consistency and facilitate evaluation process, and updates and improvements for this code continues.

Java-RULER, a replacement for the legacy FORTRAN RULER program, has been developed. The utility code is used for calculating transition strengths. Updates include an improved Monte Carlo approach for error propagation for large and asymmetric uncertainties.

A new Java code called GLSC (Gamma to Level Scheme Computation) has been developed to replace the legacy GABS and GTOL codes. The Java code has improvements and offers new interactive features for fitting gammas in a level scheme, for calculating level feedings, and for calculating absolute gamma emission probabilities within decay datasets.

The AME-NUBASE viewer has been developed to provide easy and customized retrieval of AME (Atomic Mass Evaluation) and NUBASE (evaluation of ground-state and isomer properties) entries and also to automatically update all Q records in the adopted datasets and all parent Q values in the decay datasets in an input ENSDF file with the latest AME values.

The new Java code RadiationReport has been developed to replace the legacy RADLIST for calculating energies, intensities and doses of all radiations and LOGFT for calculating logft values for a decay dataset.

It can calculate logft values for forbidden-unique decays with order>2 which are incorrectly treated as allowed decays by the legacy LOGFT code.

A new Java code AlphaHF has been developed to replace the legacy ALPHAD-radD for calculating the alpha-decay hindrance factor (HF) and nuclear radius parameter r_0 . The new code can deal with asymmetric uncertainties which is lacked in the legacy code and has improved uncertainty propagation. It also provides a simple tool with a graphical interface to calculate HF and r_0 for a single branch from user's input.

Other new utility and analysis codes that have been implemented and released are: KeynumberCheck for checking NSR keynumbers in ENSDF datasets and Excel2ENSDF for converting an Excel table to an ENSDF dataset. Discussions during the USNDP meeting have motivated updates in the codes and the process for code distribution.

A new toolkit "ETool" is under development to encapsulate all utility and analysis Java codes in one application to further facilitate the workflow and improve the efficiency of ENSDF evaluation.

IV. Nuclear Reaction Data

The nuclear reaction data effort focuses on evaluation of nuclear reaction data and the related measurement and compilation activities. USNDP also makes important contributions to nuclear reaction model code development and improvement of reaction cross-section standards, with close collaboration from experimental groups such as Los Alamos Neutron Science Center, Rensselaer Polytech. Inst., U. Lowell, Massachusetts, Japanese Atomic Energy Agency, and U. Strasbourg.

In FY22, the continued effort on improving nuclear reaction modeling has provided the unified, consistent description of the couple-channel formalism and statistical Hauser-Feshbach nuclear reaction theories, which impacts strongly deformed target nuclei. We developed a new capability of calculating E1 and M1 giant resonances using non-iterative finite amplitude methods, which is important for estimating neutron radiative capture cross sections where experimental data are not available. We continued to improve a proper expression of the compound nuclear reaction cross section in terms of the average decay width. LANL has been applying the Monte Carlo technique to the Gaussian Orthogonal Ensemble (GOE) to better understand the statistical properties in the neutron-induced nuclear reactions. Through this effort, we demonstrated the compound cross section derived from the decay widths is ambiguous when the transmission coefficient is large (meaning strong coupling), where the average widths are calculated for both the S and K matrix cases.

As an evaluation effort, the coupled-channel model was employed to describe the neutron incident channel, and the calculated transmission coefficients in EMPIRE for the case of a strongly deformed nucleus, ¹⁸¹Ta. A preliminary study of new calculations was made for ²³⁸U, which found the collective enhancement of the particle-hole excitation hardens the energy spectrum of emitted neutrons in the pre-equilibrium process. The evaluation of ²³⁹Pu data based on the CoH3 calculation continued for the future ENDF library, which included upgraded prompt fission neutron spectrum and average fission neutron multiplicity. For the IAEA released photo-nuclear data library, LANL extended the Hauser-Feshbach Fission Fragment Decay (HF₃D) model for calculating prompt fission gamma-ray energy spectrum and the gamma-ray multiplicity to complement the current library.

The experimental differential cross sections on ${}^{16}O(n, \alpha){}^{13}C$ reaction were finalized based on the measurements performed using LENZ (Low Energy NZ instrument) at the Los Alamos Neutron Science Center (LANSCE), and the work is under journal review. We compared the experimental data of ${}^{16}O(n, \alpha_0)$ with energy-averaged ENDF/BVIII.0, ENDF/B-VII.1, and JENDL/AN-2005 cross sections using the LENZ energy resolution function, which are in good agreement with ENDF/B-VIII.0, ENDF/B-VI.8 and JENDL/AN-2005, but inconsistent with ENDF/B-VII.1. We suggest a full evaluation on the ${}^{17}O$ system with new experimental data sets including newly available angular distributions of ${}^{13}C(\alpha, n)$, and a need of improved angular distribution data using different systematics such as a Time Projection Chamber for (n, α) measurements, in order to enhance the fidelity of the ${}^{17}O$ system evaluation.

Neutron-induced charged particle reactions performed at LANSCE were finalized for double differential (n,p) and (n, α) cross sections on ^{54,56}Fe and ^{58,60}Ni isotopes. Measured angular distributions and proton-

and alpha-production cross sections are being used for updating evaluation library, which will be implemented to the next ENDF/B-VIII.1 release. In addition to stable nuclear reaction studies, we also finalized the unstable nuclear reaction cross sections measured at LANSCE in collaboration with the Isotope Production Facility at LANL. The reaction cross sections of ⁵⁹Ni (n,p) and ⁵⁹Ni(n, α), and ⁵⁶Ni(n, p) and ⁵⁶Co(n, p) were finalized and the reaction rates of ⁵⁶Ni and ⁵⁶Co were updated to perform sensitivity studies for estimating the impact in nu-p process. Updated Geant modeling for the case of neutron transports was reported in the peer-reviewed journal with the emphasis of validating Geant results against the LASNCE experimental data and the MCNP simulations.

In preparation for the next US nuclear reaction data release, ENDF/B-VIII.1, scheduled for February 2024, most of this FY was dedicated to the coordination of the multiple submitted contributions, review process and organization of Beta releases. For the first time in many years, all the candidate evaluations for a new release are going through an independent review process, which is significantly improving the quality of the files, allowing us to identify issues and potential problems early. The review procedure, system and interface has been tested, implemented, and successfully deployed, allowing for the review process to begin. The neutron and decay sublibrary for example had some completed reviews done in FY22, while we set up reviews for other sublibraries such as thermal scattering law, alphas, deuteron, photonuclear, fission yields, etc. A positive example and impact of this review approach is the fact that there were multiple neutron evaluations for the very important isotope ²³⁹Pu. A review panel with Subject Matter Experts was formed, which identified the strengths and challenges of each file enabling us to move forward, discussing its conclusions among evaluators and reviewers. BNL helped coordinate the review process and is archiving and disseminating the files and reports. We also developed a timeline of milestones and Beta releases leading to the release of ENDF/B-VIII.1, which was approved by the CSEWG Executive Committee. We ended the FY22 with the final preparations for "Beta0" releases and with the organization of the 2022 Nuclear Data Weeks (CSEWG/USNDP).

Additionally, we successfully organized and held a Hackathon meeting at BNL on September $19^{th} - 23^{rd}$, 2022, with about 10 in-person participants and about 5 remote attendees. During the week, many old and new issues with the library files were addressed, while others were found and logged. We also successfully organized the workshop "New physics, new capabilities, what's changing in ENDF/B" at the International Conference on Physics of Reactors (PHYSOR) on May 20, 2022.

Nuclear Astrophysics Highlights

Thermonuclear reaction rates derived from a Monte Carlo model of particle emission from the compound nucleus were used in a comprehensive analysis of neutrino-process nucleosynthesis in core-collapse supernovae (CCSNe). Improved rates resulted from careful investigation of the Hauser-Feshbach statistical model parameters, especially for the region in CCSNe where neutrino flavor oscillations occur.

The thermonuclear rates for the ⁵⁹Cu(p, α) and ⁵⁹Cu(p, γ) reactions were improved at X-ray burst temperatures through studies of the properties of resonances in ⁶⁰Zn. The modifications in the rates suggest a reduced role of the (p, α) reaction which causes a "NiCu cycle" in X-ray burst nucleosynthesis,

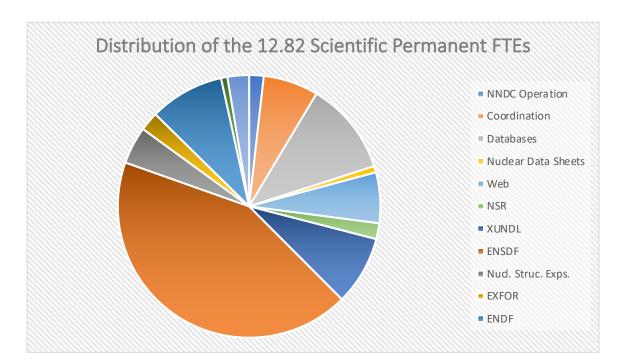
and an enhancement in the formation of heavier elements. This work was published in FY22 in the Astrophysical Journal.

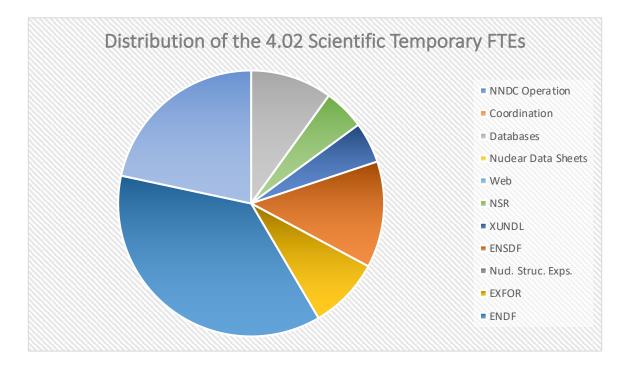
Because there are few experimental studies of neutron-induced reaction cross sections for proton-rich unstable nuclei, thermonuclear rates for these reactions based on a statistical model must be used for nucleosynthesis studies. They are also used for cosmochronometry studies – wherein the abundance on earth of the decay daughters of certain long-lived radionuclides are used to determine the time between an astrophysical event (such as a supernova explosion) and the formation of our solar system. A new study using improved rates has proposed using shorted-lived radioisotopes of ⁹²Nb and ⁹⁸Tc as the nuclear cosmochronometers for the supernova neutrino-process occurring in core-collapse supernovae.

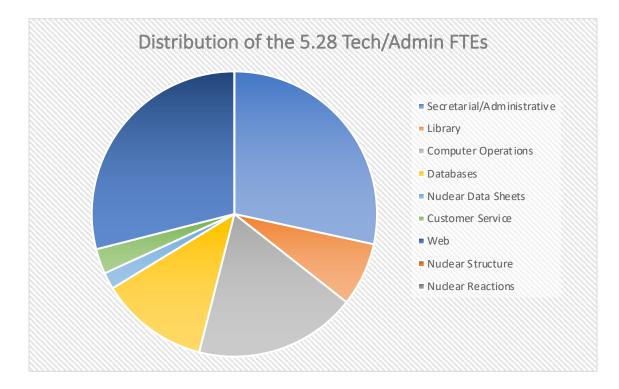
USNDP Collaborative Projects

The formation of the Nuclear Data InterAgency Working Group (NDIAWG) has led to a dramatic increase in the coordination of nuclear data activities across US federal agencies. The NDIAWG's efforts have been aided by the collection of nuclear data needs from Workshop on Applied Nuclear Data Activities (WANDA), the series of workshops organized by the Nuclear Data Working Group (NDWG). NDIAWG coordination has led to several joint NNSA-USNDP FOA's and joint projects. As a result, the USNDP has several funded projects in FY22 directly or indirectly funded by programs represented in the NDIAWG:

- Gamma Rays Induced by Neutrons (BNL/LBNL/LLNL) is an NA-22 funded project aiming to improve inelastic and neutron capture gamma emission data to support active neutron interrogation applications.
- ENSDF Modernization project (BNL/LLNL/ANL) is an Office of Science funded project working to modernize the ENSDF database format and supporting infrastructure.
- DOE Office of Nuclear Energy, Gateway for Accelerated Innovation in Nuclear (GAIN) initiative award through TerraPower (LANL): The new ³⁵Cl(n,p) cross section measurement will improve the nuclear data evaluation on chlorin to impact on reactor physics integral parameters of the Molten Chloride Reactor Experiment.
- The Structure Based Evaluations of Nuclear Data (LANL/LLNL/BNL) is an Office of Science funded project working to integrate more nuclear structure information into R-matrix evaluations and to further streamline the R-matrix evaluation process.
- AIACHNE (LANL/BNL/NIST) is an Office of Science funded project working to identify shortcomings in PFNS measurements and then use AI to design an experiment to address the shortcomings.
- The NA-22 funded "Accurate Decay Data" project (BNL) aims at providing improved intensities of gamma rays emitted in the decay of selected fission products (¹⁴⁰I, ¹³⁰La, ¹⁴³Ce, ¹³⁵Xe and ¹³⁵I) using state-of-the-art experimental techniques, at Gammasphere and at the newly developed NNDC decay station.
- DOE-NE's Nuclear Energy Advanced Modeling and Simulation Program (NEAMS) for the ²³⁸U and ⁵⁶Fe(n,n'g) measurement program using GENESIS funded through the FY18 NDIAWG FOA (LBNL/LANL/BNL).
- DOE-NE's Nuclear Energy University Program (NEUP) for measurements on ³⁵Cl for fast reactor design improvement (LBNL).


USNDP Staffing Table FY 2022


The table below gives the FTE distribution for each USNDP group according to activity. The values in this table and following plots are for the based funding only. In this table, PhD P means PhD Permanent; PhD T means PhD Temporary, which includes post-docs and scientists working under contract; T/A means Technical and Administrative; and GS means Graduate Student.


	ANL		BNL		14	NL	IB	INL	LLNL	MSU		ORNL		TAMU		TUNL		
Activity	PhD P	PhD P		T/A		PhD T	PhD P		PhD P	PhD P	PhD P	PhDT	GS	PhD P	PhD P		T/A	Totals
I. NNDC Facility Operation	0	0.23	0	2.85	0	0	0	0	0	0	0	0	0	0		0	. 0	3.08
Management		0.23		1.00											Ű			0.23
Secretarial/Administrative Support				1.5														1.5
Library				0.38														0.38
Computer Operations				0.97											0.05			1.02
II. Coordination	0.05	0.27	0	0	0	0	0.5	0	0	0	0	0	0	0	0.05	0	0	0.87
National Coordination		0.25	-	-	-	-	0.5	-	-	-		-	-				-	0.75
International Coordination	0.05	0.02																0.07
III. Nuclear Physics Databases	0	1.47	0	0.65	0	0	0	0.4	0	0	0	0	0	0	0	0	0	2.52
Nuclear Science References, NSR		0.25		0.4				•							Ű			0.65
Exper. Nucl. Structure Data, XUNDL		0.1																0.1
Eval. Nucl. Structure Data, ENSDF		0.1																0.1
Numerical Nuclear Data, NuDat				0.25														0.25
Experimental Reaction Data, CSISRS		0.06													1			0.06
Evaluated Nuclear Data File, ENDF		0.05																0.05
Database Software Maintenance																		0
Future Database System Develop.		0.91						0.4									0.3	1.61
IV. Information Dissemination	0	0.1	0	1.53	0	0	0	0.1	0	0	0.1	0	0	0	0	0	0	1.83
Nuclear Data Sheets		0.1		0.1														0.2
Customer Services				0.15													0.3	0.45
Web Maintenance & Development				1.28				0.1			0.1				0.7	0.1	0.25	2.53
V. Nuclear Structure Physics	0.7	1.9	0.8	0	0	0	2.3	0	0	1	1	0.1	0	1	0	0	0	8.81
NSR Abstract Preparation		0.25	0.2	-	-			-							0.1		0.05	0.6
Compilation of Exper. Structure Data		0.34	0.2							0.15					0.6	0.1	0.2	1.59
Eval. of Masses & Nuclides for ENSDF	0.4	0.73	0.42				2.2			0.65	1	0.1		1				6.5
Ground & Metastable State Properties	0.2	0.13																0.33
Radioactive Decay Data Evaluation	0.05									0.01								0.06
Thermal Capture Gamma Data Eval.																		0
Light Mass Eval. for Nucl. Physics A																		0
Nuclear Structure Data Measurement	0.05	0.49					0.05											0.59
ENSDF Evaluation Support Codes										0.19								0.19
VI. Nuclear Reaction Physics	0	0.73	0.8	0	0.7	1.05	0.14	0	0.25	0	0.1	0	0.2	0	0	0	0	3.97
Experimental Data Compilation		0.3	0.35															0.65
ENDF Manuals and Documentation		0.01																0.01
ENDF Evaluations		0.3	0.18		0.4	0.2												1.08
Nuclear Reaction Standards			0.25															0.25
Nuclear Model Development							0.1		0.15									0.25
Nucl. Reaction Data Measurements			0.02		0.3	0.85	0.04											1.21
Astrophysics Nuclear Data Needs											0.1		0.2					0.3
Covariances development																		0
Reactor anti-neutrino & decay heat calc.		0.1																0.1
Verification and Validation		0.02							0.1						0.75	0.1	0.55	1.52
DOE-SC Nucl. Data Funded Staff	0.75	4.74	1.62	5.03	0.7	1.05	2.89	0.5	0.25	1	1.2	0.1	0.2	1	0	0	0	21.03
Staff Supported by Other Funds	0.25	6.89	3.8	0.47			2.16	1.4							0.75	0.1	0.55	16.37
TOTAL STAFF	1	11.6	5.42	5.5	0.7	1.05	5.05	1.9	0.25	1	1.2	0.1	0.2	1	0.75	0.1	0.75	37.6

USNDP FTE Plots FY 2022

The plots below give the FTE distribution for Scientific Permanent, Scientific Temporary and Tech/Admin FTEs, in pie charts according to activity.

Detailed Status of the Work Plan – Fiscal Year 2022 Report

Each task area in this section is summarized with a status table listing individual tasks and their completion status. Below we present a sample task area table with the meaning of each status indicator.

XNL Planned Activities	Status	Issues/Path Forward
This is the name of the first activity.		This task is on schedule/going well/etc. It is not
		required to mention anything in the Issues/Path
		Forward box.
This is the name of the second activity.		This task is complete. Again, It is not required to
		discuss it.
This is the name of the third activity.		This task is behind schedule. The Issues/Path
		Forward field will explain/elaborate. There may
		be an issue HQ can help with.
This is the name of the fourth activity.		A milestone was missed. The Issues/Path Forward
		field will explain/elaborate. There may be an issue
		HQ can help with.

I. NNDC Facility Operation

A. Management

This task includes planning, budgeting, personnel, interaction with BNL management, and interaction with funding authorities.

B. Library

NNDC maintains an archival collection of low- and intermediate-energy nuclear physics publications. This library supports the NNDC compilation activities, the U.S. nuclear reaction and nuclear structure data evaluation, and international nuclear structure evaluation effort.

C. Computer Operation

The NNDC operates several servers running Red Hat Enterprise Linux in support of its compilation, evaluation, database maintenance, and information dissemination functions. In addition, each staff member has a PC that supports an interface to these Linux servers and supports administrative functions, such as word processing and email. Furthermore, MS Windows servers provide centralized backup, printing and file serving for the PCs. This task includes software upgrades, hardware and software procurements, machine operations and internal user support for both the Linux and Windows platforms.

BNL Planned Activities	Status	Issues/Path Forward
In collaboration with ITD, ensure continuous		
availability of mission-critical Web services		

through full compliance of NNDC's computers with DOE cyber security requirements.	
Provide technical computer support to NNDC staff, visitors, and external collaborators to enable them to effectively and securely use NNDC computing resources as well as procure computer hardware, software and support services to meet NNDC's computing requirements.	
Manage NNDC/NE cluster.	

II. Coordination

A. National Coordination

National coordination is required for activities under the USNDP as well as Cross Section Evaluation Working Group (CSEWG). This is mostly performed by the NNDC, with contributions from other laboratories (USNDP Working Groups and Task Forces as well as CSEWG Committees).

BNL Planned Activities	Status	Issues/Path Forward
Prepare and organize USNDP budget briefing.		
Prepare USNDP reports and work plans.		The FY2023 workplan is late
Organize and chair CSEWG meeting at BNL.		
Organize and chair USNDP meeting at BNL.		
Edit and publish summary reports and proceedings of the CSEWG and USNDP meetings		The 2021 CSEWG minutes are late but the 2022 CSEWG minutes are nearly complete
Maintain CSEWG and USNDP websites.		
Organize mini-CSEWG meetings in the summer if needed. Host and help organize NDAC meeting.		

LANL Planned Activities	Status	Issues/Path Forward
Organize and chair CSEWG Evaluation		
Committees meeting at BNL.		
Organize and chair CSEWG Covariance		
Committee meeting at BNL.		
Organize and chair Nuclear Reaction Working		
Group.		

LBNL Planned Activities	Status	Issues/Path Forward
Help organize WANDA meeting.		No issues to report. LBNL continued to plan
		coordinated activities with NASA.

ORNL Planned Activities		Status	Issues/Path Forward
Coordinate and outreach USNDP	Nuclear		
Astrophysics activities.			

TUNL Planned Activities	Status	Issues/Path Forward
Organize and chair USNDP Nuclear Structure		Organized session after ANL town hall meeting
Committee.		

B. International Coordination

ANL Planned Activities	Status	Issues/Path Forward
Participate in IAEA-sponsored nuclear data		Participated in the NSDD meeting in April, 2022
activities.		and in the TM on Decay Data for Monitoring
		Applications
Organizer of the FRIB-TA Topical program on		
"Isomers in the Era of FRIB"		
Hosted and mentored evaluator (Fulbright		
scholar) from NSDD data center		

BNL Planned Activities	Status	Issues/Path Forward
Participate in IAEA-sponsored nuclear data activities.		
Participate in NEA WPEC annual meeting.		
Participate in IAEA CRP and technical meetings.		
Continue to participate in training/mentoring of new ENSDF evaluators through collaborative work.		

LANL Planned Activities	Status	Issues/Path Forward
Participate in IAEA-sponsored nuclear data activities.		
Participate in NEA WPEC annual meeting.		

LBNL Planned Activities	Status	Issues/Path Forward
Participate in IAEA-sponsored nuclear data		
activities.		

MSU Planned Activities	Status	Issues/Path Forward
Participate in IAEA-sponsored nuclear data		
activities.		

TAMU Planned Activities	Status	Issues/Path Forward

Participate in IAEA-sponsored nuclear data activities.

TUNL Planned Activities	Status	Issues/Path Forward
Participate in IAEA-sponsored nuclear data		Attended NSDD meeting in Canberra
activities.		

III. Nuclear Physics Databases

A. Nuclear Science References (NSR)

The NNDC is responsible for NSR, the bibliographic database for nuclear physics research. This task includes quality control, file update and maintenance, and file distribution to collaborators. Updates are performed on a continuing basis. The preparation of NSR entries is given under Nuclear Structure Physics.

BNL Planned Activities	Status	Issues/Path Forward
Distribute database to collaborators.		
Perform database updates and maintenance.		
Continue joint project with the NRDC network to transfer missing nuclear reaction references to NSR.		
Study in depth the possibilities of using AI and ML techniques in NSR, in collaboration with LBNL.		None. Walid Younes working as a contractor with the LBNL group on NucScholar.

B. Experimental Nuclear Structure Data (XUNDL)

The NNDC is responsible for maintaining and providing access to the XUNDL database. This database contains compilations (in ENSDF format) of recently published or completed level-structure data for high-spin and low-spin physics. The NNDC coordinates this work and updates the database as new/revised data sets are received from collaborators.

BNL Planned Activities	Status	Issues/Path Forward
Perform weekly updates of the database using		
input received from compilers.		
Distribute database yearly to the NSDD network.		

C. Evaluated Nuclear Structure Data File (ENSDF)

The NNDC is responsible for ENSDF, a database of evaluated experimental nuclear structure and decay data. The NNDC is responsible for the format and content checking, preparation of the manuscript, and quality control (review) of evaluations submitted for inclusion. The NNDC maintains the database, which includes database updates and distribution to collaborators. Corrections are implemented on a continuous basis.

BNL Planned Activities	Status	Issues/Path Forward
Maintain ENSDF database, includes continuous updating.		
Process evaluations received from NSDD evaluators.		
Distribute ENSDF database to collaborators on a monthly basis.		
Proceed with the ENSDF modernization project.		

D. Numerical Nuclear Data (NuDat)

The NNDC is responsible for NuDat, which consists of a database and a suite of codes that access it, allowing web users to search for level and γ -ray properties extracted from ENSDF, ground and metastable state properties (Wallet Cards), and atomic and nuclear radiations derived from ENSDF. Additionally, NuDat contains an interactive Chart of Nuclides and interactive level schemes.

BNL Planned Activities	Status	Issues/Path Forward
Update NuDat database as necessary.		

E. Experimental Reaction Data File (EXFOR)

The NNDC is responsible for maintaining the EXFOR database at BNL. This database contains experimental nuclear reaction data for incident energies below 1 GeV, including neutron-induced reactions and reactions with incident-charged particles of mass $A \le 12$. Many groups worldwide compile experimental data and send it to the central database in Vienna in the EXFOR format. Then, each center is responsible to update its own database. The effort described here includes quality control, file update, and data transfer activities. The NNDC database is updated as compilations are exchanged and checked from the compiling centers. The compilation activity is given under Nuclear Reaction Physics.

BNL Planned Activities	Status	Issues/Path Forward
Update EXFOR database with compilations from		
cooperating centers (500 entries expected). The		
NNDC compilation work can be found under		
Nuclear Reaction Physics, Section V of the		
present document.		
Participate in WPEC Subgroup 50 on creating a		
critically reviewed version of EXFOR.		

F. Evaluated Nuclear Data File (ENDF)

The NNDC is responsible for ENDF, a database of evaluated nuclear data required for many nuclear applications. The work is organized under the CSEWG, coordinated by the NNDC. The ENDF file contains complete descriptions of nuclear reactions of neutrons with many nuclides and elements for energies up to 20 MeV and radiations from radioactive decay. A number of evaluations for energies up to 150 MeV and for incident-charged particles and photons are also included. The data are stored in the ENDF format developed at NNDC in the 1960s and adopted as an international standard. In addition to the U.S. library,

ENDF/B, the database contains evaluated data libraries from the European Union, Japan, Russia, and China. This activity includes the processing and quality control of the U.S. ENDF/B library, the distribution of this database in the U.S. and the exchange of libraries internationally. New evaluations for the next release of the library, following ENDF/B-VIII.0, are assembled, tested and made available to users through NNDC's Web servers and GitLab collaboration server at git.nndc.bnl.gov.

BNL Planned Activities	Status	Issues/Path Forward
Maintain and improve Sigma database and web interface for users without specialized knowledge of ENDF-6 format. (See also information dissemination, Section IV.)		
Maintain and extend ADVANCE, the ENDF continuous integration system that continually checks for modification to the ENDF database then runs all available tests on the changed data files.		Issues with GitLab's support for BNL's cybersecurity profile delayed (re)deployment of ADVANCE into FY2023

G. Database Software Maintenance

This activity includes software bug fixes and enhancements for the six nuclear physics databases maintained by NNDC.

BNL Planned Activities	Status	Issues/Path Forward
Fix software bugs and develop enhancements for the six nuclear physics databases maintained by NNDC.		

H. Future Database Systems Development

BNL Planned Activities	Status	Issues/Path Forward
Upgrade the Linux/MySQL server software to fix bugs, provide new functionalities, and improve		
the system's performance, security and reliability.		

IV. Information Dissemination

The goal of the dissemination activities of the USNDP is to provide scientists and engineers with nuclear data from the USNDP-maintained nuclear databases in a variety of user-friendly formats and media.

A. Nuclear Data Sheets

The USNDP provides some paper publications as well as electronic access to the nuclear physics databases that it maintains. This includes the Nuclear Data Sheets journal published by Elsevier and various versions of the Nuclear Wallet Cards.

BNL Planned Activities	Status	Issues/Path Forward
Prepare issues of Nuclear Data Sheets for publication.		
Work on a new version of Nuclear Wallet Cards.		
Work on a new version of Handbook of Radioactive Nuclei.		

MSU Planned Activities	Status	Issues/Path Forward
Continue development of software for Nuclear		
Data Sheets publication.		

B. Customer Services

This task accounts for the non-electronic services which the USNDP renders to customers. At the scientific staff level, this means direct assistance to users needing advice from nuclear data experts or advice on solving complex queries via electronic access to the database. The NNDC staff allocation at the support level is for maintaining a "help desk" as well as for administrative/clerical support of its customer services.

BNL Planned Activities	Status	Issues/Path Forward
Provide technical support to nuclear data end-		
users as necessary.		

C. Web Site Maintenance

The NNDC provides electronic access to the nuclear physics databases that it maintains on behalf of the USNDP as well as access to other nuclear physics information through its website. Other USNDP members also offer nuclear physics information through their websites. These services require resources to maintain currency and improve performance.

BNL Planned Activities	Status	Issues/Path Forward
Solicit user suggestions on enhancements to the		
ENSDF, NSR, NuDat, and Sigma web interfaces		
and be responsive to those needs. Expand		
search and plotting capabilities for ENSDF data.		
Maintain web interfaces for ENDF and EXFOR		Due to severe cybersecurity issues with legacy
databases.		website, the site was disabled and traffic
		redirected to the IAEA mirror.
Maintain currency of the CSEWG, USNDP and		
the NNDC websites, proactively respond to		
users' requests.		
Maintain the NNDC Web Services availability on		
the 99% and higher level.		
Strictly follow all BNL and DOE cybersecurity		
rules and regulations during the Web		
application design, development and		

implementation. Address issues that arise during BNL scans.	
Upgrade GitLab server software to provide more powerful and advanced functionalities in the NNDC collaboration services.	
Make progress with modernization of the website, enhancing capabilities and follow industry best practices.	
Continue development of mobile applications targeting highly used databases.	

ORNL Planned Activities	Status	Issues/Path Forward
Incorporation of new mass compilations and		
new rate libraries into online collections.		

TUNL Planned Activities	Status	Issues/Path Forward
Provide access to present and past evaluations		Maintained website
of Energy Levels of Light Nuclei for A=3-20		
nuclides, including associated figures and		
energy-level diagrams and tables.		
Provide access to compiled and evaluated data		With the retirement of our assistant, this literature
on light nuclei related to p-, alpha- and n-		search, and compilation of data was not carried
capture reactions, and ground-state decays.		out this year. Information from past years was
		maintained and available on the site.
Provide access for TUNL dissertations collection.		Maintained updated list of graduates

V. Nuclear Structure Physics

A. NSR Abstract Preparation

The literature search and preparation of KEYWORD abstracts for publications included in NSR require scientific expertise. BNL continues to have the overall responsibility for this database. Similar contributions from other external collaborators are expected. These will be checked and edited by BNL as necessary before being added to the database.

BNL Planned Activities	Status	Issues/Path Forward
Prepare entries for approximately 3,100 new		
references and keyword abstracts for 2,000 of		
them. Provide coverage for 80 major journals,		
including complete coverage of Physical Review		
C and Nuclear Physics A.		

B. Compilation of Experimental Nuclear Structure Data

This activity involves compilation of recently published or completed experimental nuclear structure data for inclusion in XUNDL. The compilation is managed by the NNDC.

ANL Planned Activities	Status	Issues/Path Forward
Compile and review datasets for recently published experimental nuclear structure data for inclusion in the XUNDL database. Interact with the authors for requesting additional experimental data or for further clarification of		No requests for compilations were made by the XUNDL coordinator
the published results.		

BNL Planned Activities	Status	Issues/Path Forward
Compile new B(E2) experimental data. Continue		
work on a B(E2) evaluation project in		
collaboration with McMaster University.		
Compile new double-beta decay experimental		
data. Start working on a data project with Dr. V.		
Tretyak, Kyiv Institute for Nuclear Research.		
Compile and review datasets for recently		464 datasets were compiled from 255 papers.
published experimental nuclear structure data		
for inclusion in the XUNDL database. Interact		
with the authors for requesting additional		
experimental data or for further clarification of		
the published results.		
Review compiled datasets submitted by other		
data centers prior to inclusion in the XUNDL		
database. Work with PRC and EPJA to check and		
compile data prior to publication.		
Compile new mass measurements and submit		
data file to nuclearmasses.org webpage at		
ORNL.		

LBNL Planned Activities	Status	Issues/Path Forward
Compile and review datasets for recently published experimental nuclear structure data for inclusion in the XUNDL database. Interact with the authors for requesting additional experimental data or for further clarification of		None. LBNL is no longer compiling data into XUNDL, as agreed upon with BNL.
the published results.		

MSU Planned Activities	Status	Issues/Path Forward
Compile and review datasets for recently published experimental nuclear structure data for inclusion in the XUNDL database. Interact with the authors for requesting additional experimental data or for further clarification of the published results.		
Work with PRC and EPJA to check and compile data prior to publication.		

TUNL Planned Activities	Status	Issues/Path Forward
Compile and review datasets for recently published experimental nuclear structure data for inclusion in the XUNDL database. Interact with the authors for requesting additional experimental data or for further clarification of the published results.		49 data sets were compiled from 40 articles.

C. A-Chains and Nuclides Evaluations for ENSDF

USNDP evaluates nuclear structure and decay data for inclusion in the ENSDF database. This effort includes the critical analysis of all available experimental nuclear structure and radioactive decay data for a nuclide or a group of related nuclei to deduce recommended values from the measured data and prepare a file in ENSDF format that is the basis for publications in Nuclear Data Sheets and is used to update the contents of the USNDP nuclear structure and decay database, ENSDF.

ANL Planned Activities	Status	Issues/Path Forward
Evaluate at least one mass chain from the ANL		A=200 (12 nuclides) was completed and submitted
region of responsibility.		to NNDC for review; A=201 (13 nuclides) was
		revised following the reviewer's comments and
		submitted to NNDC for publication
Review mass chain evaluations, as requested.		On a request by the ENSDF manager, A=213 was
		reviewed

BNL Planned Activities	Status	Issues/Path Forward
Evaluate at least four mass chains or their		139 nuclides were evaluated and submitted to the
equivalent nuclides.		ENSDF database
Review at least four mass chains or their		5 mass chains were reviewed
equivalent nuclides.		
Update ENSDF for the identification of new		
nuclides and for the first publication on the		
findings of the excited states of nuclides.		
Edit all evaluations submitted for publication,		
including checking their format and physics		
content.		
Continue mentoring new ENSDF evaluators.		New ENSDF evaluators Shuya Ota and Jin Wu were
		trained in ENSDF policies and procedures.

LBNL Planned Activities	Status	Issues/Path Forward
Evaluate the equivalent of at least two mass		None. LBNL exceeded its planned mass chain
chains (20 nuclides), including a minimum of one		evaluation goal this year.
from the A=21-30 region. Emphasis will be		
placed on evaluating data of current interest to		
the nuclear structure and nuclear application		
communities.		

No issues. Mass chain reviews were performed.

MSU Planned Activities	Status	Issues/Path Forward
Evaluate the equivalent of at least two mass chains.		
Review one mass-chain evaluation.		

ORNL Planned Activities	Status	Issues/Path Forward
One equivalent mass chains and the data for		
new nuclides will be evaluated.		
Review mass-chain evaluations, as requested.		

TAMU Planned Activities	Status	Issues/Path Forward
At least one mass chain, or their equivalent		
nuclides, will be evaluated.		
Review mass-chain evaluations, as requested.		

TUNL Planned Activities	Status	Issues/Path Forward
Evaluate one or two A-chains per year for		An evaluation of A=13 nuclides was submitted in
publication in Nuclear Data Sheets and inclusion		September. ¹³ Li, ¹³ Be, ¹³ B, ¹³ C, ¹³ N, ¹³ O, ¹³ F
in the ENSDF database.		
Evaluate and update ENSDF for A=2-20 near		This year we focused on submission of A=13.
drip-line nuclides, especially for first		
observations or when ENSDF has no previous		
dataset.		
Update various reaction datasets in ENSDF, such		At present we are mostly focused on nuclide and
as for beta-decay and beta-delayed particle		A-chain evaluations. This should be removed.
emission.		

D. Ground and Metastable State Properties

ANL Planned Activities	Status	Issues/Path Forward
Compile and evaluate atomic masses and		Work is continuing on the new AME and NUBASE
complementary nuclear structure data for the		libraries; compiled 100 datasets and evaluated 60
Atomic Mass Evaluation and the NUBASE		datasets for AME and NUBASE
evaluation of nuclear properties.		

BNL Planned Activities	Status	Issues/Path Forward
Develop new database for ground and		New CouchDB database containing data for over
metastable state properties (WalletCraft).		3,300 nuclides with more than 15,000 individual measurements was constructed.
Begin evaluation process to provide recommended ground and metastable state		New evaluation of ground state and long-lived isomeric properties was completed.
properties.		

E. Non-ENSDF Decay Data Evaluations

ANL Planned Activities	Status	Issues/Path Forward
Contribute to the IAEA-led project on "Evaluated		continuing
Decay Data Library for Monitoring Applications."		

BNL Planned Activities		Issues/Path Forward
Contribute to the beta-delayed neutron		McMaster continues to update the beta-delayed
emitters IAEA CRP.		neutron database maintained by the IAEA.

LBNL Planned Activities	Status	Issues/Path Forward
Work with researchers at Pacific Northwest		DTRA funding ended this year, but work continued
National Laboratory on the development of a		on the database, which is being distributed on the
numerical database with complete Gamma-ray-		LBNL nuclear data group database.
X ray coincidence data in a joint effort with the		
Defense Threat Reduction Agency. The database		The database will continue to be updated into
will be benchmarked against existing decay data		FY23 and beyond.
from ENSDF as well as recently published		
datasets not yet included in ENSDF. These		
efforts will be coordinated with the ENSDF		
modernization initiative led by BNL.		

MSU Planned Activities	Status	Issues/Path Forward
Contribute to the IAEA-led project on "Evaluated		
Decay Data Library for Monitoring Applications."		

F. Neutron-induced g-Ray Data Evaluation

LBNL Planned Activities	Status	Issues/Path Forward
Continue updating the Inelastic Scattering of		No issue. This work is being continued as a part of
Reactor Fast Neutrons Database (e.g., the		the Gammas Rays Induced by Neutrons (GRIN)
"Baghdad Atlas") with modern ENSDF data, as a		NDIAWG project.
validation database for $(n,n'\gamma)$ as well as with		
additional sources of energy differential $(n,n'\gamma)$		
data from GELINA at Geel, neutronELBE at		
HZDR, and the GENESIS array at LBNL. Extract		
information from ENDF needed to produce flux-		
weighted partial gamma-ray cross sections and		
comparing the result to values in the Atlas.		
Start benchmarking reaction modeling codes,		No issues. This work is continuing.
including Talys and EMPIRE. This work will be		
performed in collaboration with researchers		
from the IAEA and Naval Nuclear Laboratory.		
Explore the role of quasi-continuum		No issues. This work is continuing.
contributions through collaboration with		

researchers from LLNL and the University of		
Oslo.		

G. Nuclear Structure Data Measurements

ANL Planned Activities	Status	Issues/Path Forward
Participate in nuclear physics research activities		Participated in several research activities at ATLAS
at ANL, MSU, and other nuclear physics user		and CARIBU related to structure of neutron-rich
facilities with the main emphasis on decay		nuclei in the fission-product region and in the
studies of neutron-rich nuclei, spectroscopy of		heavy actinide region; participated in the first
heavy actinide nuclei, and nuclei far from the		decay station campaign at FRIB
line of stability.		

BNL Planned Activities	Status	Issues/Path Forward
Precisely determine decay schemes of relevant		A gammasphere experiment on the decay of 186Ir
medical isotopes using state-of-the-art gamma-		was performed and analyzed by a SULI student.
ray spectroscopy.		
Participate in beta-decay measurements at		Participated in the first decay station
facilities, such as Argonne's CARIBU, with an		measurement at FRIB. Published an article on the
emphasis on nuclei relevant to decay heat,		decay of the fission fragment 141Ba.
antineutrino spectra, and delayed nu-bar.		
Perform gamma-ray spectroscopy experiments		Task was not completed due to the passing of
with GRETINA to remedy data deficiencies		Shaofei Zhu.
uncovered during ENSDF evaluations.		
Setup new gamma-alpha coincidence station.		New decay station has been constructed at
		Brookhaven.

LBNL Planned Activities	Status	Issues/Path Forward
Perform targeted decay-data measurements to address inconsistencies in decay data using light-ion and neutron activation and the Fast Loading and Unloading Facility for Fission Fragment Yields (FLUFFY) combined with a local array of single-crystal and Clover HPGe detectors. Results from these experiments will		These experiments have been moved to FY23 due to beam scheduling limitations.
be published and updates presented to the ENSDF database manager.		

H. ENSDF Physics and Checking Codes

BNL Planned Activities	Status	Issues/Path Forward
Maintain and upgrade ENSDF checking and		FMCHK was updated based on requests from
physics programs for format changes as		users.
required.		
Work on the development of the next		New ENSDF schema was developed along with an
generation ENSDF format and develop		associated API. All current Adopted Levels and

applications	that	apply	Machine	Learning
techniques to the new format.				

Gammas datasets were converted from the 80 column ascii format to the new JSON schema.

MSU Planned Activities	Status	Issues/Path Forward
Maintain and improve the ENSDF utility and analysis codes in Java developed at MSU: McMaster-MSU Java-NDS, ConsistencyCheck, GLSC, Java-RULER, Excel2ENSDF, KeynumberCheck, AME-NUBASE viewer, RadiationReport, AlphaHF		
Develop new Java codes to replace the legacy ENSDF codes in Fortran that lack maintenance and to facilitate and streamline ENSDF evaluation		

LLNL Planned Activities	Status	Issues/Path Forward
Collaborate with BNL in the development of the		
next generation ENSDF format and develop		
applications that apply Machine Learning		
techniques to the new format.		

VI. Nuclear Reaction Physics

A. Experimental Data Compilation

The NNDC, as part of a larger international cooperation, has responsibility for compiling experimental nuclear reaction data that have been produced in the U.S. and Canada.

BNL Planned Activities	Status	Issues/Path Forward
Compile experimental data for neutron, charged-particle, and photon-induced reactions		
from 120 publications.		
Explore possibilities of recovering previously unobtainable reaction data and proactively respond to users' needs.		

B. ENDF Manuals and Documentation

The NNDC is responsible for maintaining the format and procedures manual for the ENDF system as well as producing the documentation supporting the contents of the ENDF/B library.

BNL Planned Activities	Status	Issues/Path Forward
Maintain the GitLab version of the ENDF-6		
formats manual current with CSEWG-endorsed		
format changes. Issue official release of the		
manual.		

Automate the generation and posting of the latest unofficial version of the ENDF-6 formats manual.	
Chair the WPEC Generalized Nuclear Database Structure (GNDS) Expert Group and maintain the format specification for the GNDS, the successor format to ENDF-6.	D. Brown stepped down as the EG GNDS at the May 2022 WPEC meeting; the new chair is C. Mattoon (LLNL)

C. ENDF Evaluations

Evaluated nuclear reaction data, for applications and basic science needs, are stored in the ENDF database, which is maintained by BNL. As Chair of the CSEWG Evaluation Committee, LANL staff works with BNL to ensure quality control, particularly for new evaluations. New evaluations funded primarily from other sources are prepared for archival in the ENDF library. BNL, LANL, LLNL and ORNL provided neutron, proton, and photonuclear reaction data evaluations.

BNL Planned Activities	Status	Issues/Path Forward
Respond to user needs for evaluated nuclear		
reaction data.		
Collect and address users feedback related to		
the ENDF library.		
Complete evaluations for Zr isotopes to support		Work transitioning to Ph.D. project of RPI student.
new reactor fuel concepts.		
Work with CSEWG on upgraded evaluations for		
future release of the ENDF/B library.		
Improve methodology for providing covariance		
data in the resonance and fast neutron region to		
the next release of ENDF.		
Update the Decay Data Sub-library as new data		
for neutron-rich nuclides become available.		
Improve methodology for generating		
unresolved resonance region cross section		
probability distributions.		
Maintain the Atlas of Neutron Resonances		
electronic files in preparation for a future		
update of the Atlas of Neutron Resonances.		
Continue working on the use of ML techniques		
to better determine resonance properties.		
Participate in the Fission Yield evaluation CRP at		
the IAEA.		

LANL Planned Activities	Status	Issues/Path Forward
Upgrade the LANL ENDF evaluations for major		
actinides as well as some other structural		
materials that perform well in criticality		
benchmarks, including new theoretical		
development of statistical model for deformed		

systems. Close collaboration with international nuclear data library activities at the IAEA and OECD/NEA.	
Provide new evaluations of the prompt fission neutron spectra for major actinides, based on the Monte Carlo technique as well as the deterministic method, including pre-equilibrium emissions at high energies.	
Improve photon production data for neutron capture and inelastic scattering, which will be used in prompt gamma-ray spectroscopy.	
Improve calculations for neutron-induced charged-particle reactions in collaboration with LENZ/LANCE, and produce evaluated files based on these data.	

LLNL Planned Activities	Status	Issues/Path Forward
Perform new evaluations as per LLNL customer		
requests and submit these as well as other LLNL-		
generated evaluations into ENDF.		
Perform R-matrix fits for proton and alpha		
particles incident on selected medium-mass		
nuclei (4<=A<=50) to accurately describe low-		
energy resonances and make candidates for		
future ENDF/B-VIII evaluations.		
Improve transitions from R-matrix resonance		
regions to statistical models at higher energies,		
to give better predictions of gamma production.		
Add candidate exit distributions of charged-		
particle productions (for ENDF/B-VIII.1)		

D. Nuclear Reaction Standards

Nearly all neutron cross section measurements are made relative to a neutron cross section standard, such as the hydrogen elastic cross section. The primary objective of this task is to ensure accurate and current values for standard cross sections and related quantities. In preparation for the new evaluations of the standards, we are improving the standards database and procedures under the auspices of the IAEA data development project "Maintenance of the Neutron Cross Section Standards." Historically, the standards evaluation activity has included data from other than the cross-section standards, i.e., the thermal constants and the ²⁵²Cf spontaneous fission neutron spectrum. Recently, the scope has been broadened, largely through the data development project, to include an investigation of possible inelastic scattering cross section; and proposing updates for the evaluations of the ²⁵²Cf spontaneous fission neutron spectrum and the ²⁵²Cf spontaneous fission neutron spectrum.

	BNL Planned Activities	Status	Issues/Path Forward
--	------------------------	--------	---------------------

Continue work on standards evaluations through involvement in the IAEA data development project "maintenance of the neutron cross section standards. Checking the literature and other sources for possible measurements related to standards. Continue involvement with nuclear data groups as a) A member of the program committee of the International Symposium on Reactor Dosimetry's 17th International Symposium on Reactor Dosimetry (ISRD-17). Due to concerns about the virus, the ISRD- 17 meeting will be held May 2021 (instead of 2020) in Lausanne Switzerland. I attended a meeting of the members of the Program Committee on Feb. 2. The agenda included updates on the meeting in	The use of a new python-based program replacing GMA has allowed ratios of spectrum averaged cross sections to be used in the standards evaluation process. This has allowed improvements in several fission cross sections. Further work on this is underway. We continue to examine the literature and sources of appropriate measurements. For a), ISRD-17 is now planned for May 21-26, 2023, at the Switzerland location. Registration began on 1-23-23. The ISRD-18 is now planned for May 18-23, 2025. The location has been established but it cannot be disclosed until it is announced at the end of the ISRD-17 meeting. Both meetings were affected by covid and could possibly be changed if additional covid problems occur. For b), CW2020 became CW2022 due to the covid.
May, issues concerning future symposium papers, the location of the meeting in 2023 (in the USA), and assignments for various positions (workshop, poster session and technical chairs) for the 2023 meeting. There are still lingering concerns about the meetings due to Covid-19. b) A member of the International Advisory Board for the 5th International Workshop on Nuclear Data Covariances (CW2020), which has been delayed due to the pandemic. Work will continue on both 6Li(n,t) and	It was held Sept. 25-29, 2022. It was only virtual. A. Carlson co-authored a paper and chaired a session. The paper was on the ratios of spectrum averaged cross sections. The proceedings are being worked on.
235U(n,f) measurements at NIST with sub- thermal neutrons.	experiments since the NIST reactor has been shut down due to an accident. It is expected to be available in 2023. Also, the ⁶ Li mass determination has not been completed since the NIST Isotope Dilution Mass Spectrometry facility is over- subscribed due to work not done during the covid era and loss of a staff member.
Finish publishing the report on the IAEA Consultants' Virtual Meeting on Neutron Data Standards Oct.12-16, 2020. Work closely with Professor Zhang of the Peking University in Beijing, China on improvements to new measurements at the China Spallation Neutron Source (CSNS). The CSNS is a major facility for making neutron data measurements. Plans are being made for the next standards meeting where more information may be available on when a new standards evaluation can be available.	The report for the Oct. 12-16, 2020, virtual meeting has been published as an IAEA report. A virtual meeting was held Dec. 6-10, 2021. Also, a hybrid meeting was held Oct. 18-21, 2022. A. Carlson attended that meeting in person. The presentations for the 2021 and 2022 meetings are available online. A. Carlson reported on standards activities at all 3 meetings. The concern now is when a new evaluation of the standards will be done. It awaits several measurements that have been initiated but not completed. The latest work

	by Zhang relates to improvement in ${}^{6}Li(n,t)$ and ${}^{10}B(n,\alpha)$ cross sections.
--	---

E. Nuclear Model Development

This task covers activities, such as the development and validation of nuclear reaction models, used for prediction of nuclear reaction cross sections. The two major codes are CoH3 (LANL) and EMPIRE (BNL). Measurements made by ANL, LANL and LBNL, along with other measurements made with DOE low-energy physics funds, will play a crucial role in the validation of the models in these computer codes. LANL participates in the IAEA Coordinated Research Project RIPL that improves the accuracy and reliability of input parameters used in nuclear reaction calculations.

BNL Planned Activities	Status	Issues/Path Forward
Develop a new coupled-channels code using modern coding techniques for use in future evaluation work, focusing on deformed nuclides.		M. Vorabbi left BNL to accept Lecturer position at the University of Surrey, UK. Work on this task halted.
Model (n,γ) spectra to address a major shortcoming in the ENDF library as noted in WANDA 2020.		Work transitioned to the NA-22 funded GRIN project.

LANL Planned Activities	Status	Issues/Path Forward
Continue to develop a microscopic description		
of the fission process in the fast energy range as		
well as penetrability calculations through		
arbitrary fission barrier shapes. Implement the		
theory into the Hauser-Feshbach code to		
facilitate actinide evaluations.		
Continue to develop a coupled-channels		
Hauser-Feshbach method for better prediction		
of neutron- induced reactions on deformed		
nuclei, with particular emphasis on fission,		
capture, and inelastic scattering channels.		
Continue to develop the Hauser-Feshbach		
fission fragment decay code for evaluating		
major actinides, which has a unique capability to		
produce prompt fission neutron and gamma-ray		
spectra.		
Develop a semi-microscopic model for nuclear		
structure, which will be incorporated into the		
reaction calculations.		

F. Nuclear Reaction Data Measurements

LANL Planned Activities	Status	Issues/Path Forward
-------------------------	--------	---------------------

Finalize the precision measurement on the	
prompt fission-neutron spectrum for fission	
induced by neutrons of 0.5 to 200 MeV on ²³⁵ U	
and ²³⁹ Pu. With the high-energy neutron	
detector array, the measurement will be	
extended to the outgoing neutrons up to 12	
MeV.	
Perform double-differential cross sections of (n,	
p) and (n,α) reactions on 58Ni and 60Ni in	
respect to incoming neutron energies and	
outgoing particles angles for the neutron energy	
range of 0.5 - 20 MeV.	
Perform the precision measurement on the	
¹⁶ O(n, α) reaction cross section at LANSCE.	
Measure energy-dependent reaction cross	
sections on ${}^{35}Cl(n,p)$ and (n,α) reactions for	
improving insufficient experimental data.	
Finalize double-differential cross sections of	
⁵⁴ Fe(n,p) reaction in respect to incoming	
neutron energies and outgoing particles angles	
for the neutron energy range of 0.5 - 20 MeV.	

LBNL Planned Activities	Status	Issues/Path Forward
Study the ⁵⁶ Fe(n,n' γ) and ²³⁸ U(n,n' γ) reactions		No issues. The analysis and interpretation of the
using the Gamma Energy Neutron Energy		GENESIS data proceeded as planned.
Spectrometer for Inelastic Scattering (GENESIS).		
Perform energy-dependent measurements of		No issues. The analysis and interpretation of the
short-lived fission fragments on ^{235,238U} using the		FLUFFY data proceeded as planned.
Fast Loading and Unloading Facility for Fission		
Yields (FLUFFY).		
Measurement of the decay of ^{68m,g} Cu populated		This experiment was not fielded in FY22 due to
via ^{nat} Zn(n,px) using FLUFFY. This experiment will		beam time scheduling considerations.
run "piggyback" on the ^{235,238} U(n,f)		
measurements mentioned above.		

G. Astrophysics Nuclear Data Needs

The objective of this activity is to support the nuclear data needs of the increasingly sophisticated simulations of astrophysical phenomena. The Astrophysics Task Force of the USNDP, presently chaired by ORNL, serves to improve communication and coordination of nuclear data evaluation activities relevant for studies in astrophysics.

BNL Planned Activities	Status	Issues/Path Forward
Work on neutron capture and fission integral		
values and their uncertainties in the energy		
region of interest for nuclear astrophysics.		

Evaluate nuclear astrophysics potential of EXFOR library.

LANL Planned Activities	Status	Issues/Path Forward
Continue improvement of neutron capture,		
beta-delayed neutron and fission modellings for		
s- and r-process hydro-dynamics simulations.		
Develop a Monte Carlo simulation using Geant4,		
to be implemented for radioactive nuclear		
reaction analysis at Time of Flight facilities, in		
the interest of providing direct reaction cross		
sections for better understanding of heavy		
element productions.		

ORNL Planned Activities	Status	Issues/Path Forward
Continue assessments of capture reactions on p-		
rich unstable nuclides that are important for		
novae and X-ray bursts. The nuclei to be studied		
are those planned for measurements at		
radioactive beam facilities.		

H. Covariances Development

BNL Planned Activities	Status	Issues/Path Forward
Develop low-fidelity fission yield covariances		
consistent with the ENDF decay sub-library and		
with measured yields. This project would allow		
us to develop expertise for the upcoming Fission		
Yields CRP.		

LBNL Planned Activities	Status	Issues/Path Forward
Continue to develop an experimentally driven fission covariance database		This database was uploaded onto the LBNL website and is now available for public
		dissemination.

I. Reactor Antineutrino Spectra and Decay Heat Calculations

BNL Planned Activities	Status	Issues/Path Forward
Improve our methods and databases to calculate anti-neutrino spectra for major actinides.		
Perform decay-heat calculations in collaboration with experimental groups.		
Possibly participate in relevant experiments.		

J. Verification and Validation

Quality Assurance (QA) of a nuclear data library requires that all files are checked for integral consistency and conformance with the adopted format. This part of the QA is called verification and is one of the fundamental functions of the NNDC. Furthermore, checking performance of the library against the integral experiments, known as validation, is also an important step to ensure the usefulness of the library for the end-users. The most extensive validation is performed by LANL and other CSEWG contributors funded with non-DOE-SC sources. The USNDP supports the ultimate validation effort carried out at BNL.

BNL Planned Activities	Status	Issues/Path Forward
Maintain automatic, real-time verification and validation of new/modified ENDF evaluations submitted to the NNDC GitLab server.		

Appendix A – Additional Funding Sources

ANL

Additional support for the nuclear data work comes from two LAB 18-1903 funded proposals (DOE/SC/NP and DOE/NNSA/NA-22) and two LAB 19-2114 funded proposals (DOE/SC/NP).

BNL

Additional support for the nuclear data work at the National Nuclear Data Center (NNDC) comes from the following sources:

- 1. The US Nuclear Criticality Safety Program (NCSP) supports the NNDC services in maintaining NCSP data submitted to the ENDF/B library as well as data development work on evaluations of neutron cross section covariances for criticality safety applications.
- 2. The Fission in Rapid Process Elements (FIRE) collaboration.
- 3. Evaluation of energy dependent fission product yields, funded by NA-22.
- 4. NA-22 Intentional Forensics Venture, a project to develop a tagging system for nuclear fuel.
- 5. DOE-NE's Nuclear Energy University Program (NEUP) to serve on thesis committee of RPI student developing Pb evaluations for ENDF.
- 6. High precision decay measurements of isotopes relevant to nuclear forensics, funded by NA-22.
- 7. Brookhaven National Laboratory Program Development funds used to establish in-house capabilities for decay data measurements.
- 8. Three NDWIAG FOA-funded proposals:
 - Modernization and optimization of the Evaluated Nuclear Structure Data File
 - High precision decay measurement of isotopes relevant to nuclear medicine
 - AI Guided development of a measurement of the 235U PFNS (led by LANL)
 - Improvements to R-matrix evaluations using information from nuclear structure (led by LANL)

LANL

Additional supports for the nuclear data project are as follows:

- 1. Advanced Simulation and Computing under NNSA.
- 2. The US Nuclear Criticality Safety Program (NCSP).
- 3. Evaluation of energy dependent fission product yields, funded by NA-22.
- 4. Fission in R-Process Elements (FIRE) collaboration.
- 5. LANL-LDRD to develop transmission measurement capability for studying radionuclides at LANSCE.
- 6. Science Campaign support under Office of Experimental Sciences by NNSA.

LBNL

Additional supports for the LBNL nuclear data project are as follows:

- 1. DOE-NE's Nuclear Energy University Program (NEUP) for ³⁵Cl(n,x) measurements on for fast reactors.
- 2. DOE Isotope Program the Tri-Laboratory Effort in Nuclear Data (with LANL-IPF and BNL-BLIP);
- 3. Google Project X faculty support grant for exploring the use of energetic photons and electrons to transmute nuclear waste through photoexcitation.
- 4. NNSA/NA-113 Correlated Neutron-Gamma Data for Stewardship Science
- 5. NNSA/NA-22 for the measurement of neutron-gamma ray coincidences using the GENESIS array.
- 6. NorthStar RadioIsotopes LLC Optimized Deuteron Target Fabrication for Radionuclide Production

LLNL

Additional supports for the LLNL nuclear data project are as follows:

- 1. Advanced Simulation and Computing under NNSA.
- 2. The US Nuclear Criticality Safety Program (NCSP).
- 4. ENSDF modernization project.

Appendix B – Non-USNDP funded nuclear data work

This appendix was added to voluntarily capture additional nuclear data work performed at USNDP sites.

Brookhaven National Laboratory

BNL scientists are engaged in a number of non-USNDP funded nuclear data activities, most notably with the continued support of the National Criticality Safety Program (NCSP) and the Defense Nuclear Nonproliferation (NA-22) Program. Currently the NCSP partly funds the operation of the Evaluated Nuclear Data File library project, in conjunction with the USNDP. The NCSP also funds development of analytical methods for thermal neutron scattering data and unresolved resonance probability distribution generation and a neutron resonance spingroup assignment machine learning project. NA-22 funds several projects as a direct result of the Nuclear Data Interagency Working Group proposal process. These projects include measurements of decay data relevant for non-proliferation, library development to support active neutron interrogation, and data work supporting the intentional forensics mission.

Los Alamos National Laboratory

Many projects and scientists at LANL contribute to non-USNDP funded nuclear data activities. Six additional funding sources addressed in Appendix A are all related to nuclear data work at LANL and Los Alamos Neutron Science Center.

Lawrence Berkeley National Laboratory/UC Berkeley

The LBNL/UC Bay Area Nuclear Data (BAND) Group has a diverse set of funding to pursue experimental and evaluation-related work centered on applied nuclear data. This includes neutron and charged-particle cross section measurements for Nuclear Energy, Stockpile Stewardship, Nonproliferation and Isotope Production. Furthermore, several students members of the group receive fellowship and traineeship support from the NNSA/NA-22 under the auspices of the Nuclear Science and Security Consortium. The BAND group also performs targets nuclear technology development research under corporate sponsorship including research into photo-excitation of nuclear isomers under the support of Google Project-X and the development of high-intensity neutron sources for Radioisotope Production as part of a Strategic Partnership Program with NorthStar RadioNuclides LLC.

Lawrence Livermore National Laboratory

Livermore Laboratory has had a program for nuclear data for almost 60 years, and this has been often independent of the national ENDF library format. In that time, LLNL has made its own ENDL libraries in format designed for punched cards, and it has its own groups of evaluators leading to revisions about

twice per decade. In the 70s the ENDL libraries were described by a comprehensive series of 20 descriptive volumes published under the label of UCRL-50400.

Because this original ENDL format was less flexible than the ENDF format, in the recent decade we have had some incentive to make more modern data structure, and this led us to designing, coding and translating the new Generalized Nuclear Data Structure (GNDS). This GNDS method is now maintained internationally by WPEC, and it is used internally at LLNL for all stages of the nuclear pipeline from decay models, data storage, translation, testing and processing for transport codes. It is the most comprehensive method for interchange of nuclear data and is becoming widely adopted as the preferred future standard.

The nuclear data that LLNL uses comes from a variety of sources. We examine existing libraries to determine which provides the best description of nuclear cross sections, and often use our own models for neutron reactions and decay processes. We have optimized our own Hauser-Feshbach models for neutron reactions on a wide variety of fission fragments and other nuclides of use for radiochemistry. As one of the first labs to comprehensively transport both neutrons and charged particles (isotopes of hydrogen and helium) we have a comprehensive library of low-energy charged-particle evaluations, with particular attention to exothermic reactions on targets up to lithium isotopes.

In the last 15 years the experimental groups at LLNL have been using the indirect 'surrogate' method to measure cross-sections for which direct detection is unavailable, and the results have been made into GNDS evaluations to determine the effects of the new cross-sections. We test all evaluations by comparison with the standard database of critical-assembly measurements and also by comparison with the pulsed-sphere measurements once performed at LLNL. New critical assemblies are being created, measured and modeled. The national collaboration to use a Time Projection Chamber to measure actinide and standard cross-sections is being led by LLNL experimentalists. We have used both ENDL and ENDF processed libraries in transport codes for programmatic work.

The USNDP provides a small contribution to the LLNL nuclear data team to enable the sharing of inhouse data products with the national community. Our GNDS work is funded outside USNDP and has provided thorough checks of the ENDF libraries submitted by various groups.

Appendix C – Fiscal Year 2022 Articles authored by USNDP staff

2021CH50 "Nuclear Data Sheets for A=194," Nuclear Data Sheets 177, 1 (2021), J. Chen, B. Singh 2021Do08 "Solving the Puzzles of the Decay of the Heaviest Known Proton-Emitting Nucleus ¹⁸⁵Bi", Phys. Rev. Lett. 127 (2021) 202501, D.T.Doherty, A.N.Andreyev, D.Seweryniak, P.J.Woods, M.P.Carpenter, K.Auranen, A.D.Ayangeakaa, B.B.Back, S.Bottoni, L.Canete, J.G.Cubiss, J.Harker, T.Haylett, T.Huang, R.V.F.Janssens, D.G.Jenkins, F.G.Kondev, T.Lauritsen, C.Lederer-Woods, J.Li, C.Muller-Gatermann, D.Potterveld, W.Reviol, G.Savard, S.Stolze, S.Zhu 2021KE09 "Measurement of ²³⁸U(n, n'y) cross section data and their impact on reaction models," Phys. Rev. C 104, 044605 (2021), M. Kerveno, M. Dupuis, A. Bacquias, F. Belloni, D. Bernard, C. Borcea, M. Boromiza, R. Capote, C. De Saint Jean, P. Dessagne, J. C. Drohe, G. Henning, S. Hilaire, T. Kawano, P. Leconte, N. Nankov, A. Negret, M. Nyman, A. Olacel, A. J. M. Plompen, P. Romain, C. Rouki, G. Rudolf, M. Stanoiu, R. Wynants 2021Ko35 "Nuclear Data Sheets for A=203", Nucl. Data Sheets 177 (2021) 509-699 F.G. Kondev **2021NE06** "Informing nuclear physics via machine learning methods with differential and integral experiments" Phys. Rev. C 104, 034611 (2021), D. Neudecker, O. Cabellos, A.R. Clark, M.J. Grosskopf, W. Haeck, M.W. Herman, J. Hutchinson, T. Kawano, A.E. Lovell, I. Stetcu, P. Talou, S.V. Wiel 2021SI35 "Nuclear Data Sheets for A=64", Nuclear Data Sheets 178, 41 (2021), B. Singh, J. Chen **2021ST18** "Angular Momentum Removal by Neutron and γ-Ray Emissions during Fission Fragment Decays" Phys. Rev. Lett. 127, 222502 (2021) I. Stetcu, A. E. Lovell, P. Talou, T. Kawano, S. Marin, S. A. Pozzi, A. Bulgac **2021Wa49** "Impact of shell evolution on Gamow-Teller β decay from a high-spin long-lived isomer in ¹²⁷Ag", Phys. Lett. B823 (2021) 136766, H.Watanabe, C.X.Yuan, G.Lorusso, S.Nishimura, Z.Y.Xu, T.Sumikama, P.-A.Soderstrom, P.Doornenbal, F.Browne, G.Gey, H.S.Jung, J.Taprogge, Zs.Vajta, H.K.Wang, J.Wu, A.Yagi, H.Baba, G.Benzoni, K.Y.Chae, F.C.L.Crespi, N.Fukuda, R.Gernhauser, N.Inabe, T.Isobe, A.Jungclaus, D.Kameda, G.D.Kim, Y.K.Kim, I.Kojouharov, F.G.Kondev, T.Kubo, N.Kurz, Y.K.Kwon, G.J.Lane, Z.Li, C.-B.Moon, A.Montaner-Piza, K.Moschner, F.Naqvi, M.Niikura, H.Nishibata, D.Nishimura, A.Odahara, R.Orlandi, Z.Patel, Zs.Podolyak, H.Sakurai, H.Schaffner, G.S.Simpson, K.Steiger, H.Suzuki, H.Takeda, A.Wendt, K.Yoshinaga 2022AB27 "Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment," Phys. Rev. Lett., 129, 075001 (2022), H. Abu-Shawareb, doi:10.1103/PhysRevLett.129.075001 2022At03 "Incorporating the weak mixing angle dependence to reconcile the neutron skin

measurement on ²⁰⁸Pb by PREX-II," Phys.Rev. C 105, 055503 (2022), M.Atzori Corona, M.Cadeddu, N.Cargioli, P.Finelli, M.Vorabbi

2022Ay02 "Single-particle and collective excitations in ⁶⁶Zn", Phys. Rev. C105 (2022) 054315, A. D. Ayangeakaa, N. Sensharma, M. Fulghieri, R. V. F. Janssens, Q. B. Chen, S. Zhu, M. Alcorta, M. P.

Carpenter, P. Chowdhury, A. Gade, C. R. Hoffman, F. G. Kondev, T. Lauritsen, E. A. McCutchan, A. M. Rogers, and D. Seweryniak

2022BA08 "Nuclear Data Sheets for A=213," Nucl. Data Sheets, 181, 475, (2022), M. S. Basunia doi:10.1016/j.nds.2022.03.002

2022BA26 "Nuclear Data Sheets for A=186," Nucl. Data Sheets, 183 (1), (2022), J. C. Batchelder, A. M. Hurst, and M. S. Basunia, doi:10.1016/j.nds.2022.06.001

2022BE24 "Experimental observation of the M1 scissors mode in ²⁵⁴No," Phys. Lett. B, 834, 137479 (2022), F.L. Bello Garrote, A. Lopez-Martens, A.C. Larsen, I. Deloncle, S. Péru, F. Zeiser, P.T. Greenlees, B.V. Kheswa, K. Auranen, D.L. Bleuel, D.M. Cox, L. Crespo Campo, F. Giacoppo, A. Görgen, T. Grahn, M. Guttormsen, T.W. Hagen, L. Harkness-Brennan, K. Hauschild, G. Henning, R.-D. Herzberg, R. Julin, S. Juutinen, T.A. Laplace, M. Leino, J.E. Midtbø, V. Modamio, J. Pakarinen, P. Papadakis, J. Partanen, T. Renstrøm, K. Rezynkina, M. Sandzelius, J. Sarén, C. Scholey, S. Siem, J. Sorri, S. Stolze, and J. Uusitalo, doi:10.1016/j.physletb.2022.137479

2022BE27 "Algorithms of pulse shape analysis for Gammasphere under high count rate conditions, 2022 Nuclear Instruments and Methods A, 1-23" L. Begleya

2022BL06 "The ⁴⁰Ar(d,p)⁴¹Ar cross section between 3–7 MeV", Appl. Rad. Iso., 110509, (2022), D.L. Bleuel, S.G. Anderson, L.A. Bernstein, J.A. Brown, J.A. Caggiano, B.L. Goldblum, J.M. Gordon, J.M. Hall, K.P. Harrig, M.S. Johnson, T.A. Laplace, R.A. Marsh, M.E. Montague, A. Ratkiewicz, B.Rusnak, and C.A. Velsko, doi:10.1016/j.physletb.2022.137479

2022Bo04 "Isomers in ²⁰³TI and core excitations built on a five-nucleon-hole structure", Phys. Rev. C105 (2022) 044327, V. Bothe, S. K. Tandel, S. G. Wahid, P. C. Srivastava, Bharti Bhoy, P. Chowdhury, R. V. F. Janssens, F. G. Kondev, M. P. Carpenter, T. Lauritsen, D. Seweryniak, and S. Zhu

2022BO15 "Colloquium: Machine learning in nuclear physics", Rev. Mod. Phys. 94 (2022) 031003, Amber Boehnlein, Markus Diefenthaler, Nobuo Sato, Malachi Schram, Veronique Ziegler, Cristiano Fanelli, Morten Hjorth-Jensen, Tanja Horn, Michelle P. Kuchera, Dean Lee, Witold Nazarewicz, Peter Ostroumov, Kostas Orginos, Alan Poon, Xin-Nian Wang, Alexander Scheinker, Michael S. Smith, and Long-Gang Pang

2022Bu13 "Developing the ³²S(p,d)³¹S*(p)(gamma) reaction to probe the ³⁰P(p,gamma)³¹S reaction rate in classical novae" Phys.Rev. C 105, 045805 (2022), S.Burcher, K.A.Chipps, R.O.Hughes, C.S.Reingold, A.Saastamoinen, J.T.Harke, N.Cooper, S.Ahn, J.M.Allmond, H.Clark, J.A.Cizewski, M.R.Hall, J.Hooker, H.Jayatissa, K.L.Jones, S.Ota, S.D.Pain, K.Schmidt, A.Simon, S.Upadhyayula

2022CH04 "Nuclear Data Sheets for A=48", Nuclear Data Sheets 179, 1 (2022), J. Chen

2022CH37 "Nuclear Structure and Decay Data for A=31 Isobars", Nuclear Data Sheets 184, 29 (2022), J. Chen, B. Singh

2022CHZZ "Towards a Predictive HFB+QRPA Framework for Deformed Nuclei: Selected Tools and Techniques" 2022 J. Phys.: Conf. Ser. 2340 012033, E.V. Chimanski

2022Ga10 "Benchmark of a multi-physics Monte Carlo simulation of an ion guide for neutron-induced fission products" Eur. Phys. J. A 58, 27 (2022), Z.Gao, A.Al-Adili, L.Canete, T.Eronen, D.Gorelov,

A.Kankainen, M.Lantz, A.Mattera, I.D.Moore, D.A.Nesterenko, H.Penttila, I.Pohjalainen, S.Pomp,

V.Rakopoulos, S.Rinta-Antila, M.Vilen, J.Aysto, A.Solders

2022GA37 "Absolute mass calibration of fission product distributions measured with the E-v method" Nuc. Instr. Meth. A 1037, 166853 (2022) P. Gastis, J.R. Winkelbauer, D.S. Connelly, S.A. Kuvin, S.M. Mosby, C.J. Prokop, and I. Stetch

2022Ha01 "ni13/2 structures in ¹⁵⁵Sm and ¹⁵⁹Gd: Supporting evidence of a Z=60 deformed subshell gap", Phys. Rev. C105 (2022) 014301, D. J. Hartley, F. G. Kondev, M. P. Carpenter, R. V. F. Janssens, M. A. Riley, K. Villafana, K. Auranen, A. D. Ayangeakaa, J. S. Baron, A. J. Boston, J. A. Clark, J. P. Greene, J. Heery, C. R. Hoffman, T. Lauritsen, J. Li, D. Little, E. S. Paul, G. Savard, D. Seweryniak, J. Simpson, S. Stolze, G. L. Wilson, J. Wu, and S. Zhu

2022Hu09 "First observation of the decay of the 13/2+ isomer in ¹⁸³Hg and B(M2) systematics of neutron transitions across the nuclear chart," Phys. Lett. B833 (2022) 137345, H.Huang, W.Q.Zhang, A.N.Andreyev, Z.Liu, D.Seweryniak, Z.H.Li, C.Y.Guo, A.E.Barzakh, P.Van Duppen, B.Andel, S.Antalic, M.Block, A.Bronis, M.P.Carpenter, P.Copp, J.G.Cubiss, B.Ding, D.T.Doherty, Z.Favier, F.Giacoppo, T.H.Huang, B.Kindler, F.G.Kondev, T.Lauritsen, J.G.Li, G.S.Li, B.Lommel, H.Y.Lu, M.Al Monthery, P.Mosat, Y.F.Niu, C.Raison, W.Reviol, G.Savard, S.Stolze, G.L.Wilson, H.Y.Wu, Z.H.Wang, F.R.Xu, Q.B.Zeng, X.H.Yu, F.F.Zeng, X.H.Zhou

2022Iv01 "Structure of the low-lying states in ^{99,101,103,105}Pd", Phys. Rev. C105 (2022) 034337, D.Ivanova, S.Lalkovski, C.Costache, S.Kisyov, C.Mihai, N.Marginean, P.Petkov, L.Atanasova, D.Bucurescu, R.B.Cakirli, M.P.Carpenter, R.F.Casten, Gh.Cata-Danil, I.Cata-Danil, D.Deleanu, D.Filipescu, N.Florea, I.Gheorghe, D.Ghita, T.Glodariu, F.G.Kondev, R.Lica, R.Marginean, A.Negret, S.Pascu, T.Sava, E.A.Stefanova, L.Stroe, G.Suliman, R.Suvaila, O.Yordanov, N.V.Zamfir

2022JO01 "Neutron transfer reactions on the ground state and isomeric state of a ¹³⁰Sn beam", Phys. Rev. C 105, 024602 (2022), K. L. Jones, A. Bey, S. Burcher, J. M. Allmond, A. Galindo-Uribarri, D. C. Radford, S. Ahn, A. Ayres, D. W. Bardayan, J. A. Cizewski, R. F. Garcia Ruiz, M. E. Howard, R. L. Kozub, J. F. Liang, B. Manning, M. Matos, C. D. Nesaraja, P. D. O'Malley, E. Padilla-Rodal, S. D. Pain, S. T. Pittman, A. Ratkiewicz, K. T. Schmitt, M. S. Smith, D. W. Stracener, and R. L. Varner

2022KE01 "Measurement of the ²³⁵U(n, f) prompt fission neutron spectrum from 10 keV to 10 MeV induced by neutrons of energy from 1 MeV to 20 MeV" Phys. Rev. C 105, 044615 (2022), K.J. Kelly, J.A. Gomez, M. Devlin, J.M. O'Donnell, D. Neudecker, A.E. Lovell, R.C. Haight, C.Y. Wu, R. Henderson, T. Kawano, E.A. Bennett, S.M. Mosby, J.L. Ullmann, N. Fotiades, J. Henderson, T.N. Taddeucci, H.Y. Lee, P. Talou, M.C. White

2022KI05 "Proton branching ratios of ²³Mg levels", Phys. Rev. C 105 (2022) 025801, February 2022, C. H. Kim, K. Y. Chae, S. Ahn, D. W. Bardayan, K. A. Chipps, J. A. Cizewski, M. E. Howard, R. L. Kozub, M. S. Kwag, K. Kwak, B. Manning, M. Matos, P. D. O'Malley, S. D. Pain, W. A. Peters, S. T. Pittman, A. Ratkiewicz, M. S. Smith, S. Strauss

2022KI24 "Estimation of the NiCu Cycle Strength and Its Impact on Type I X-Ray Bursts", Ap J 929 (2022) 96, April 2022, C. Kim, K. Y. Chae, S. Cha, K. Kwak, G. Seong, M. S. Smith

2022Ko12 "Current nuclear data needs for applications" Phys. Rev. Res. 3, 021001 (2022), K.Kolos, V.Sobes, R.Vogt, C.E.Romano, M.S.Smith, L.A.Bernstein, D.A.Brown, M.T.Burkey, Y.Danon, M.A.Elsawi, B.L.Goldblum, L.H.Heilbronn, S.L.Hogle, J.Hutchinson, B.Loer, E.A.McCutchan, M.R.Mumpower, E.M.O'Brien, C.Percher, P.N.Peplowski, J.J.Ressler, N.Schunck, N.W.Thompson, A.S.Voyles, W.Wieselquist, M.Zerkle

2022KU12 "Direct measurement of ⁵⁹Ni(n, p)⁵⁹Co and ⁵⁹Ni(n, α)⁵⁶Fe at fast-neutron energies from 500 keV to 10 MeV" Phys. Rev. C 105 044608 (2022), S.A. Kuvin, H.Y. Lee, B. DiGiovine, C. Eiroa-Lledo, A. Georgiadou, M. Herman, T. Kawano, V. Mocko, S. Mosby, C. Vermeulen, D. Votaw, M. White, L. Zavorka, G. Perdikakis, P. Tsintari, H.I. Kim

2022Li54 "Multistep Coulomb excitation of ⁶⁴Ni: Shape coexistence and nature of low-spin excitations" Phys.Rev. C 106, 044313 (2022), D.Little, A.D.Ayangeakaa, R.V.F.Janssens, S.Zhu, Y.Tsunoda, T.Otsuka, B.A.Brown, M.P.Carpenter, A.Gade, D.Rhodes, C.R.Hoffman, F.G.Kondev, T.Lauritsen, D.Seweryniak, J.Wu, J.Henderson, C.Y.Wu, P.Chowdhury, P.C.Bender, A.M.Forney, W.B.Walters

2022LOZZ "Cluster Structures with Machine Learning Support in Neutron Star M-R relations" 2022 J. Phys.: Conf. Ser. 2340 012014, R.V. Lobato, E.V. Chimanski and C.A. Bertulani

2022Mc02 "(1969-2021) Nucl.Data Sheets 182, 1 (2022)", E.McCutchan, A.Sonzogni, C.Lister Dr. Shaofei Zhu

2022Mo05 "The polarization sensitivity of GRETINA," Nucl. Instrum. Methods Phys. Res. A1025, 166155 (2022), C.Morse, H.L.Crawford, A.O.Macchiavelli, A.Wiens, M.Albers, A.D.Ayangeakaa, P.C.Bender,

C.M.Campbell, M.P.Carpenter, P.Chowdhury, R.M.Clark, M.Cromaz, H.M.David, P.Fallon, R.V.F.Janssens, T.Lauritsen, I.-Y.Lee, C.J.Lister, D.Miller, V.S.Prasher, S.L.Tabor, D.Weisshaar, S.Zhu

2022Mo19 "Nuclear Data Sheets for A=267,271,275,279,283,287,291,295,299" Nucl. Data Sheets 182, 130 (2022), C. Morse

2022Mo20 "Nuclear Data Sheets for A=269,273,277,281,285,289, and 293" Nucl. Data Sheets 182, 167 (2022), C.Morse

2022Mu10 "Ground-state β-decay spectroscopy of ¹⁸⁷Ta", Phys. Rev. C105 (2022) 034331, M. Mukai, Y. Hirayama, Y. X. Watanabe, H. Watanabe, H. Koura, S. C. Jeong, H. Miyatake, M. Brunet, S. Ishizawa, F. G. Kondev, G. J. Lane, Yu. A. Litvinov, T. Niwase, M. Oyaizu, Zs. Podolyák, M. Rosenbusch, P. Schury, M. Wada, and P. M. Walker

2022NI03 "Nuclear Data Sheets for A=147," Nuclear Data Sheets 181, 1 (2022)", N.Nica, B.Singh, doi.org/10.1016/j.nds.2022.03.001

2022OK02 "Energy Dependent Calculations of Fission Product, Prompt, and Delayed Neutron Yields for Neutron Induced Fission on ²³⁵U, ²³⁸U, and ²³⁹Pu" J. Nucl. Sci. Technol. 59, 96 (2022) S. Okumura, T. Kawano, A. E. Lovell, T. Yoshida

2022Pr08 "Systematic trends of 0+-2, 1--1, 3--1and 2+-1 excited states in even-even nuclei" Nucl. Phys. A1027, 122511 (2022), B.Pritychenko, B.Singh, M.Verpelli <u>doi: 10.1016/j.nuclphysa.2022.122511</u> **2022RA11** "Deciphering ⁹⁸Nb β decay with the Modular Total Absorption Spectrometer at ORNL," Phys. Rev. C, 105 (6), 064301, (2022), B. C. Rasco, K. P. Rykaczewski, A. Fijałkowska, M. Karny, M. Wolińska-Cichocka, R. K. Grzywacz, D. W. Stracener, E. F. Zganjar, J. C. Batchelder, J. C. Blackmon, N. T. Brewer, M. Cooper, K. C. Goetz, J. W. Johnson, T. King, A. Laminack, J. T. Matta, K. Miernik, M. Madurga, D. Miller, M. M. Rajabali, T. Ruland, P. Shuai, M. Stepaniuk, and J. A. Winger doi:10.1103/PhysRevC.105.064301 **2022Re03** "Spin inhibition in psi-decay probabilities for states above S-n in Sm and Dy nuclei" Phys.Rev. C 105, 034612 (2022), C.S.Reingold, A.Simon, R.O.Hughes, J.T.Harke, K.A.Chipps, S.Burcher, D.T.Blankstien, J.A.Cizewski, N.Cooper, M.Hall, S.Ota, B.Schroeder, S.Upadhyayula **2022Ru06** "β decay of ¹⁴¹Ba", Phys. Rev. C106 (2022), Javier Rufino Jr., E. A. McCutchan, S. Zhu, A. A. Sonzogni, M. Alcorta, P. F. Bertone, M. P. Carpenter, J. Clark, C. R. Hoffman, R. V. F. Janssens, F. G. Kondev, T. Lauritsen, C. J. Lister, R. Pardo, A. Rogers, G. Savard, D. Seweryniak, and R. Vondrasek **2022SA16** "Noniterative finite amplitude methods for E1 and M1 giant resonances" Phys. Rev. C 105, 044311 (2022), H. Sasaki, T. Kawano, I. Stetcu

2022SC13 "Probing spin-isospin excitations in proton-rich nuclei via the ¹¹C(p, n)¹¹N reaction", Phys.Rev. C 106, 054323 (2022), J.Schmitt, G.B.King, R.G.T.Zegers, Y.Ayyad, D.Bazin, B.A.Brown, A.Carls, J.Chen, A.Davis, M.DeNudt, J.Droste, B.Gao, C.Hultquist, H.Iwasaki, S.Noji, S.Pastore, J.Pereira, M.Piarulli, H.Sakai, A.Stolz, R.Titus, R.B.Wiringa, J.C.Zamora,

2022SC17 "Horizons: nuclear astrophysics in the 2020s and beyond" 2022 The Journal of Physics, G, 1-78, H. Schatz,

2022Se03 "Single-particle and dipole excitations in ⁶²Co," Phys. Rev. C105 (2022) 044315, N. Sensharma, A. D. Ayangeakaa, R. V. F. Janssens, Q. B. Chen, S. Zhu, M. Alcorta, M. P. Carpenter, E. A. McCutchan, F. G. Kondev, T. Lauritsen, D. Seweryniak, C. R. Hoffman, A. M. Rogers, A. Gade, T. Baugher, and P. Chowdhury

2022SH20 "Determination of β-decay feeding patterns of ⁸⁸Rb and ⁸⁸Kr using the Modular Total Absorption Spectrometer at ORNL HRIBF," Phys. Rev. C, 105 (5), 054312, (2022), P. Shuai, B. C. Rasco, K. P. Rykaczewski, A. Fijałkowska, M. Karny, M. Wolińska-Cichocka, R. K. Grzywacz, C. J. Gross, D. W. Stracener, E. F. Zganjar, J. C. Batchelder, J. C. Blackmon, N. T. Brewer, S. Go, M. Cooper, K. C. Goetz, J. W. Johnson, C. U. Jost, T. T. King, J. T. Matta, J. H. Hamilton, A. Laminack, K. Miernik, M. Madurga, D. Miller, C. D. Nesaraja, S. Padgett, S. V. Paulauskas, M. M. Rajabali, T. Ruland, M. Stepaniuk, E. H. Wang, and J. A. Winger, doi:10.1103/PhysRevC.105.054312

2022SI25 "β decay of neutron-rich ⁷⁶Cu and the structure of ⁷⁶Zn," Phys. Rev. C, 106 (4), 044311, (2022), U. Silwal, J. A. Winger, S. V. Ilyushkin, K. P. Rykaczewski, C. J. Gross, J. C. Batchelder, L. Cartegni, I. G. Darby, R. Grzywacz, A. Korgul, W. Kr olas, S. N. Liddick, C. Mazzocchi, A. J. Mendez II, S. Padgett, M. M. Rajabali, D. P. Siwakoti, D. Shapira, D. W. Stracener, and E. F. Zganjar, doi:10.1103/PhysRevC.106.044311 **2022SI28** "Nuclear Structure and Decay Data for A=149 Isobars", Nuclear Data Sheets 185, 2 (2022), B. Singh, J. Chen

2022ST08 "The effects of high energy deuteron ion beam irradiation on the tensile behavior of HT-9," Nuc. Inst. Meth. B, 531 65–73, (2022), Sarah Stevenson, Andrew Dong, Yujun Xie, Jon Morrell, Andrew S. Voyles, Jeff Bickel, Lee Bernstein, S.A. Maloy, and Peter Hosemann, doi:10.1016/j.nimb.2022.09.001

2022Su19 "Successive neutron alignments in the yrast, negative-parity band of oblate-deformed ¹⁹⁹TI", Phys. Rev. C106 (2022) 024316, Saket Suman, S. K. Tandel, S. G. Wahid, Manu T., M. Hemalatha, B. Maheshwari, A. K. Jain, P. Chowdhury, R. V. F. Janssens, F. G. Kondev, M. P. Carpenter, T. Lauritsen, and D. Seweryniak

2023TS02 "Implementation and validation of realistic (n,x) reaction yields in Geant4 utilizing a detailed evaluated nuclear reaction library below 20 MeV" Nucl. Instr. Meth., A, 1046, 167666 (2022), P. Tsintari, G. Perdikakis, H. Y. Lee, S. A. Kuvin, A. Georgiadou, H. I. Kim, D. Votaw, and L. Zavo

2022UD01 "Positron Emission Intensity in the Decay of ^{86g}Y for Use in Dosimetry Studies," Molecules, 27 (3), 768 (2022), M. Shuza Uddin, Syed M. Qaim, Bernhard Scholten, M. Shamsuzzoha Basunia, Lee A. Bernstein, Ingo Spahn, and Bernd Neumaier, doi:10.3390/molecules27030768

2022UD02 "Excitation functions of proton-induced nuclear reactions on 86Sr, with particular emphasis on the formation of isomeric states in ⁸⁶Y and ⁸⁵Y," M. S. Uddin, M. S. Basunia, S. Sudár, B. Scholten, S. Spellerberg, A. S. Voyles, J. T. Morrell, M. B. Fox, I. Spahn, O. Felden, R. Gebel, L. A. Bernstein, B. Neumaier, and S. M. Qaim

2022Vo02 "Elastic proton scattering off nonzero spin nuclei", Phys. Rev. C 105, 014621 (2022), M.Vorabbi, M.Gennari, P.Finelli, C.Giusti, P.Navratil, R.Machleidt

2022Wa20 "Emergence of an island of extreme nuclear isomerism at high excitation near ²⁰⁸Pb", Phys. Lett. B832 (2022) 137262, S.G.Wahid, S.K.Tandel, S.Suman, P.C.Srivastava, A.Kumar, P.Chowdhury, F.G.Kondev, R.V.F.Janssens, M.P.Carpenter, T.Lauritsen, D.Seweryniak, S.Zhu

2022Wa34 "Establishing the ground-state spin of ⁷¹Kr" Phys. Rev. C 106, 044317 (2022),

S.Waniganeththi, D.E.M.Hoff, A.M.Rogers, C.J.Lister, P.C.Bender, K.Brandenburg, K.Childers, J.A.Clark, A.C.Dombos, E.R.Doucet, S.Jin, R.Lewis, S.N.Liddick, Z.Meisel, C.Morse, H.Schatz, K.Schmidt, D.Soltesz, S.K.Subedi

2022ZE01 "EXFOR-NSR PDF database: a system for nuclear knowledge preservation and data curation," J. Instrum. 17, P03012 (2022), V.V.Zerkin, B.Pritychenko, J.Totans, L.Vrapcenjak, A.Rodionov, G.I.Shulyak, doi: 10.1088/1748-0221/17/03/P03012

2022ZH01 "Self-consistent description of the halo nature of ³¹Ne with continuum and pairing correlations" J. Phys. G: Nucl. Part. Phys. 49 (2022) 025102, January 2022, S. S. Zhang, S. Y. Zhong, B. Shao, M. S. Smith

2022Zh22 "First observation of a shape isomer and a low-lying strongly-coupled prolate band in neutron-deficient semi- magic 187Pb", Phys. Lett. B829 (2022) 137129, W.Q. Zhang, A.N. Andreyev, Z. Liu, D. Seweryniak, H. Huang, Z.H. Li, J.G. Li, C.Y. Guo, D.T. Doherty, A.E. Barzakh, P.Van Duppen, J.G. Cubiss, B. Andel, S. Antalic, M. Block, A. Bronis, M.P. Carpenter, P. Copp, B. Ding, Z. Favier, F. Giacoppo, T.H. Huang, X.H. Yu, B. Kindler, F.G. Kondev, T. Lauritsen, G.S. Li, B. Lommel, H.Y. Lu, M.Al Monthery, P. Mosat, Y.F. Niu, C. Raison, W. Reviol, G. Savard, S. Stolze, G.L. Wilson, H.Y. Wu, Z.H. Wang, F.R. Xu, Q.B. Zeng, and X.H. Zhou

2022Zh25 "Nuclear Data Sheets for A=236" Nucl.Data Sheets 182, 2 (2022), S.Zhu

2022Zh46 "Identification of excited states in ¹⁸⁸Bi and ¹⁸⁸Po" Phys. Rev. C106 (2022) 024317, W.Q. Zhang, A.N.Andreyev, Z.Liu, D.Seweryniak, Z.H.Li, C.Y.Guo, A.E.Barzakh, P.Van Duppen, B.Andel, S.Antalic, M.Block, A.Bronis, M.P.Carpenter, P.Copp, J.G.Cubiss, B.Ding, D.T.Doherty, Z.Favier, F.Giacoppo, H. Huang, T.H.Huang, B.Kindler, F.G.Kondev, T.Lauritsen, J.G.Li, G.S.Li, B.Lommel, H.Y.Lu, M.Al Monthery, P.Mosat, Y.F.Niu, C.Raison, W.Reviol, G.Savard, S.Stolze, G.L.Wilson, H.Y.Wu, Z.H.Wang, F.R.Xu, Q.B.Zeng, X.H.Yu, F.F.Zeng, X.H.Zhou

2022ZH74 "Study of the deformed halo nucleus ³¹Ne with Glauber model based on microscopic selfconsistent structures", Science China Physics, Mechanics & Astronomy 65 (2022) 262011, March 2022, S. Y. Zhong, S. S. Zhang, X. X. Sun, M. S. Smith