Skip to main content

Advertisement

Log in

Cluster effective field theory and nuclear reactions

  • Regular Article – Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

An effective field theory (EFT) for a nuclear reaction at low energies is studied. The astrophysical S-factor of radiative \(\alpha \) capture on \(^{12}\hbox {C}\) at the Gamow-peak energy, \(T_\mathrm{G} = 0.3\) MeV, is a fundamental quantity in nuclear astrophysics, and we construct an EFT for the reaction. To fix parameters appearing in the effective Lagrangian, the EFT is applied to the study for three reactions: elastic \(\alpha \)\(^{12}\hbox {C}\) scattering at low energies, the E1 transition of radiative \(\alpha \) capture on \(^{12}\hbox {C}\), and \(\beta \) delayed \(\alpha \) emission from \(^{16}\hbox {N}\). We report an estimate of the \(S_{E1}\)-factor of the reaction through the E1 transition at \(T_\mathrm{G}\) by employing the EFT. We also discuss applications of EFTs to nuclear reactions at low energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All numerical results in the present work can be reproduced by using the expressions of the reaction amplitudes and the values of the parameters.]

Notes

  1. There are other approaches, e.g., those which treat the one-pion-exchange piece non-perturbatively, while the two-pion exchange is treated perturbatively. See, e.g., Ref. [29].

  2. \(^3\hbox {He}\) system in the pionless EFT, including the Coulomb interaction, is studied in Ref. [32].

  3. A dibaryon field, which has baryon number 2, is introduced by Kaplan [36], and it is useful to implement the effective range expansion in a theory without pions [37, 38] and with perturbative pions [39, 40].

  4. Recently, a study of nuclear few-body systems around the unitary limit was reported by König et al. [41].

  5. See the footnote 6.

  6. The kinetic energy T denotes that of the \(\alpha \)\({}^{12}\hbox {C}\) system in the center of mass frame.

  7. A typical length scale of the \(\alpha \)\(^{12}\hbox {C}\) system is, thus, \(k_\mathrm{G}^{-1}\simeq 4.8\) fm. This is comparable to the sum of the radii of \(\alpha \) and \(^{12}\hbox {C}\) obtained from the nuclear radius formula, \(r_A = 1.2 A^{1/3}\) fm; \(r_\alpha + r_{^{12}C} = 1.2(4^{1/3}+12^{1/3}) = 4.65\) fm. Meanwhile, the emitted photon carries away almost all of the released energy, \(E_\gamma '\simeq 7.64\) MeV, and the length scale of the photon is larger than the other length scales, \(E_\gamma '^{-1}\simeq 26\) fm. Thus, the photon may recognize the nuclear system as being point-like.

  8. One can see the relation between \(U_l\) and \(A_l\) through the relation

    $$\begin{aligned} \frac{1}{2} i\left[ \exp \left( 2i\omega _l \right) - U_l \right] = \exp \left( 2i\omega _l\right) \frac{1}{\cot \delta _l-i}, \end{aligned}$$
  9. The kinetic energies, T in the center of mass frame and \(T_\alpha \) in the laboratory frame, are related by the relation \(T=\frac{3}{4}T_\alpha \).

  10. In Ref. [14], we have also studied an inclusion of the ground \(0_1^+\) state of \(^{16}\hbox {O}\) in the parameter fitting for the elastic \(\alpha \)\(^{12}\hbox {C}\) scattering at low energies.

  11. We employ a Python package, emcee [84], for the fitting.

  12. Input data for the parameter fitting are the phase shifts of the elastic \(\alpha \)\(^{12}\hbox {C}\) scattering for \(l=0,1,2,3\) [81, 83], which have been generated from the R-matrix analysis of the elastic scattering data [82]. In the input data files [83], there are four column data: the first column is for the alpha energy, the second one for the phase shift as derived from the globalized Monte Carlo simulations, the third one is for the same phase shift randomized by the error from the Monte Carlo simulations, and the fourth one is for the error of the phase shifts from the Monte Carlo simulations. We have used the second column of the phase shift data in our previous work [12, 13] and the third column of the phase shift data in our other work [14,15,16] for fitting.

  13. In Ref. [86], we recently studied an inclusion of the sharp resonant \(0_3^+\) state of \(^{16}\hbox {O}\) and the first excited \(2_1^+\) state of \(^{12}\hbox {C}\) in the study of elastic \(\alpha \)\(^{12}\hbox {C}\) scattering for \(l=0\) up to \(T_{\alpha ,\mathrm{max}} = 6.62\) MeV. We found that the \(2_1^+\) state of \(^{12}\hbox {C}\) is redundant for fitting the phase shift data. To investigate its precise role, the inelastic open channel, \(\alpha +^{12}\)C\(^*(2_1^+)\), would be necessary to be included in the study of the elastic scattering above the excited energy of \(^{12}\hbox {C}\).

  14. Though the maximum energy of the data for the fit is larger than the energy of the first excited \(2_1^+\) state of \(^{12}\hbox {C}\), \(T_{(12)}=4.44\) MeV, there is no indication of the need to include the \(2_1^+\) state of \(^{12}\hbox {C}\). See the footnote 13 as well.

  15. See the footnote 14.

  16. A method to renormalize a term which does not obey counting rules in manifestly Lorentz invariant baryon chiral perturbation theory, is known as the extended on mass shell (EOMS) scheme [95, 96]. One can similarly renormalize the term proportional to \(\gamma _0\) in the counter term, \(h^{(1)R}\), even when the Coulomb interaction does not exist.

  17. See the footnote 11.

  18. One may check a convergence of the weak vertex correction for the \(\beta \)-decay, the \(D_b^{(l=1)}\) term, which we ignored in Eq. (41). Because of \(p<Q_m\) where \(Q_m\) is the Q value of the \(\beta \)-decay to the ground state of \(^{16}\hbox {O}\), \(Q_m=10.419\) MeV, one has about 1 % correction, \(|D_b^{(l=1)}/C_b^{(l=1)}|(Q_m/m_O)^2 =0.0109\) and 0.0099 for the two sets of the fitted parameters.

References

  1. S. Weinberg, Phys. A 96, 327 (1979)

    Article  Google Scholar 

  2. K. Ohta, Phys. Rev. C 46, 2519 (1992)

    Article  ADS  Google Scholar 

  3. K. Ohta, Phys. Rev. C 47, 2344 (1993)

    Article  ADS  Google Scholar 

  4. V. Bernard, N. Kaiser, T.S.H. Lee, U.-G. Meißner, Phys. Rep. 246, 315 (1994)

    Article  ADS  Google Scholar 

  5. S. Ando, D.-P. Min, Phys. Lett. B 417, 177 (1998)

    Article  ADS  Google Scholar 

  6. S. Ando, F. Myhrer, K. Kubodera, Phys. Rev. C 63, 015203 (2001)

    Article  ADS  Google Scholar 

  7. P.F. Bedaque, U. van Kolck, Ann. Rev. Nucl. Part. Sci. 52, 339 (2002)

    Article  ADS  Google Scholar 

  8. E. Braaten, H.-W. Hammer, Phys. Rept. 428, 259 (2006)

    Article  ADS  Google Scholar 

  9. U.-G. Meißner, Phys. Scripta 91, 033005 (2016)

    Article  ADS  Google Scholar 

  10. H.-W. Hammer, C. Ji, D.R. Phillips, J. Phys. G 44, 103002 (2017)

    Article  ADS  Google Scholar 

  11. H.-W. Hammer, S. Konig, U. van Kolck, Rev. Mod. Phys. 92, 025004 (2020)

    Article  ADS  Google Scholar 

  12. S.-I. Ando, Eur. Phys. J. A 52, 130 (2016)

    Article  ADS  Google Scholar 

  13. S.-I. Ando, Phys. Rev. C 97, 014604 (2018)

    Article  ADS  Google Scholar 

  14. S.-I. Ando, J. Korean Phys. Soc. 73, 1452 (2018b)

    Article  ADS  Google Scholar 

  15. H.-E. Yoon, S.-I. Ando, J. Korean Phys. Soc. 75, 202 (2019)

    Article  ADS  Google Scholar 

  16. S.-I. Ando, Phys. Rev. C 100, 015807 (2019)

    Article  ADS  Google Scholar 

  17. C. Ecker, U.-G. Meißner, Comments Nucl. Part. Phys. 21, 347 (1995)

    Google Scholar 

  18. A.M. Lane, R.G. Thomas, Rev. Mod. Phys. 30, 257 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  19. L.R. Buchmann, C.A. Barnes, Nucl. Phys. A 777, 254 (2006)

    Article  ADS  Google Scholar 

  20. R.J. deBoer et al., Rev. Mod. Phys. 89, 035007 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  21. J. Gasser, H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984)

    Article  ADS  Google Scholar 

  22. J. Gasser, H. Leutwyler, Nucl. Phys. B 250, 465 (1985)

    Article  ADS  Google Scholar 

  23. J.F. Donoghue, E. Golowich, B.R. Holstein, Dynamics of the Standard Model (Cambridge University Press, Cambridge, UK, 1992)

    Book  MATH  Google Scholar 

  24. S. Weinberg, Phys. Lett. B 251, 288 (1990)

    Article  ADS  Google Scholar 

  25. S. Weinberg, Nucl. Phys. B 363, 3 (1991)

    Article  ADS  Google Scholar 

  26. A. Nogga, R.G.E. Timmermans, U. van Kolck, Phys. Rev. C 72, 054006 (2005)

    Article  ADS  Google Scholar 

  27. D.B. Kaplan, M.J. Savage, M.B. Wise, Phys. Lett. B 424, 390 (1998)

    Article  ADS  Google Scholar 

  28. D.B. Kaplan, M.J. Savage, M.B. Wise, Nucl. Phys. B 534, 329 (1998)

    Article  ADS  Google Scholar 

  29. B. Long, C.-J. Yang, Phys. Rev. C 85, 034002 (2012)

    Article  ADS  Google Scholar 

  30. J.-W. Chen, G. Rupak, M.J. Savage, Nucl. Phys. A 653, 386 (1999)

    Article  ADS  Google Scholar 

  31. P.F. Bedaque, H.-W. Hammer, U. van Kolck, Nucl. Phys. A 676, 367 (2000)

    Article  ADS  Google Scholar 

  32. S. Ando, M. Birse, J. Phys. G 37, 105108 (2010)

    Article  ADS  Google Scholar 

  33. V.N. Efimov, Sov. J. Nucl. Phys. 12, 589 (1971)

    Google Scholar 

  34. V.N. Efimov, Sov. J. Nucl. Phys. 29, 546 (1979)

    Google Scholar 

  35. H.A. Bethe, Phys. Rev. 76, 38 (1949)

    Article  ADS  Google Scholar 

  36. D.B. Kaplan, Nucl. Phys. B 494, 471 (1997)

    Article  ADS  Google Scholar 

  37. S.R. Beane, M.J. Savage, Nucl. Phys. A 694, 511 (2001)

    Article  ADS  Google Scholar 

  38. S. Ando, C.H. Hyun, Phys. Rev. C 72, 014008 (2005)

    Article  ADS  Google Scholar 

  39. J. Soto, J. Tarrus, Phys. Rev. C 81, 014005 (2010)

    Article  ADS  Google Scholar 

  40. S.-I. Ando, C.H. Hyun, Phys. Rev. C 86, 024002 (2012)

    Article  ADS  Google Scholar 

  41. S. König, H.W. Grießhammer, H.-W. Hammer, U. van Kolck, Phye. Rev. Lett. 118, 202501 (2017)

    Article  ADS  Google Scholar 

  42. E. Epelbaum, Ulf-G Meißner, W. Glockle, Nucl. Phys. A 714, 534 (2003)

    Article  ADS  Google Scholar 

  43. E. Braaten, H.-W. Hammer, Phys. Rev. Lett. 91, 102002 (2003)

    Article  ADS  Google Scholar 

  44. C. Ji, Ph. D. thesis, Ohio University (2012)

  45. C. Ji, D.R. Phillips, Few Body Syst. 54, 2317 (2013)

    Article  ADS  Google Scholar 

  46. J. Vanasse, Phys. Rev. C 88, 044001 (2013)

    Article  ADS  Google Scholar 

  47. J. Vanasse, Phys. Rev. C 95, 024002 (2017)

    Article  ADS  Google Scholar 

  48. S. Ando et al., Phys. Lett. B 595, 250 (2004)

    Article  ADS  Google Scholar 

  49. S. Ando, J. McGovern, T. Sato, Phys. Lett. B 677, 109 (2009)

    Article  ADS  Google Scholar 

  50. M. Butler, J.-W. Chen, X. Kong, Phys. Rev. C 63, 035501 (2001)

    Article  ADS  Google Scholar 

  51. S. Ando, Y.H. Song, T.-S. Park, H.W. Fearing, K. Kubodera, Phys. Lett. B 555, 49 (2003)

    Article  ADS  Google Scholar 

  52. S.-I. Ando, Y.-H. Song, C.H. Hyun, Phys. Rev. C 101, 054001 (2020)

    Article  ADS  Google Scholar 

  53. G. Rupak, Nucl. Phys. A 678, 405 (2000)

    Article  ADS  Google Scholar 

  54. S. Ando, R.H. Cyburt, S.W. Hong, C.H. Hyun, Phys. Rev. C 74, 025809 (2006)

    Article  ADS  Google Scholar 

  55. X. Kong, F. Ravndal, Nucl. Phys. A 656, 421 (1999)

    Article  ADS  Google Scholar 

  56. M. Butler, J.-W. Chen, Phys. Lett. B 520, 87 (2001)

    Article  ADS  Google Scholar 

  57. S. Ando, J.W. Shin, C.H. Hyun, S.W. Hong, K. Kubodera, Phys. Lett. B 668, 187 (2008)

    Article  ADS  Google Scholar 

  58. J.-W. Chen, C.-P. Liu, S.-H. Yu, Phys. Lett. B 720, 385 (2013)

    Article  ADS  Google Scholar 

  59. R. Higa, G. Rupak, A. Vaghani, Eur. Phys. J. A 54, 89 (2018)

    Article  ADS  Google Scholar 

  60. X. Zhang, K.M. Nollett, D.R. Phillips, J. Phys. G 47, 054002 (2020)

    Article  ADS  Google Scholar 

  61. X. Zhang, K.M. Nollett, D.R. Phillips, Phys. Rev. C 89, 051602(R) (2014)

    Article  ADS  Google Scholar 

  62. E. Ryberg, C. Forssen, H.-W. Hammer, L. Platter, Eur. Phys. J. A 50, 170 (2014)

    Article  ADS  Google Scholar 

  63. W.A. Fowler, Rev. Mod. Phys. 56, 149 (1984)

    Article  ADS  Google Scholar 

  64. A. Coc, F. Hammache, J. Kiener, Eur. Phys. J. A 51, 34 (2015)

    Article  ADS  Google Scholar 

  65. Y. Xu et al., Nucl. Phys. A 918, 61 (2013)

    Article  ADS  Google Scholar 

  66. P. Descouvemont, D. Baye, P.-H. Heenen, Nucl. Phys. A 430, 426 (1984)

    Article  ADS  Google Scholar 

  67. K. Langanke, S.E. Koonin, Nucl. Phys. A 439, 384 (1985)

    Article  ADS  Google Scholar 

  68. J. Humblet, P. Dyer, B.A. Zimmerman, Nucl. Phys. A 271, 210 (1976)

    Article  ADS  Google Scholar 

  69. Z.-D. An et al., Phys. Rev. C 92, 045802 (2015)

    Article  ADS  Google Scholar 

  70. D. Baye, P. Descouvemont, Nucl. Phys. A 481, 445 (1988)

    Article  ADS  Google Scholar 

  71. X. Ji, B.W. Filippone, J. Humblet, S.E. Koonin, Phys. Rev. C 41, 1736 (1990)

    Article  ADS  Google Scholar 

  72. J. Humblet, B.W. Filippone, S.E. Koonin, Phys. Rev. C 44, 2530 (1991)

    Article  ADS  Google Scholar 

  73. J. Jerphagnon, Phys. Rev. B 2, 1091 (1970)

    Article  ADS  Google Scholar 

  74. S. Ando, J.W. Shin, C.H. Hyun, S.W. Hong, Phys. Rev. C 76, 064001 (2007)

    Article  ADS  Google Scholar 

  75. S.-I. Ando, Eur. Phys. J. A 33, 185 (2007)

    Article  ADS  Google Scholar 

  76. S. Konig, D. Lee, H.-W. Hammer, J. Phys. G Nucl. Part. Phys. 40, 045106 (2013)

    Article  ADS  Google Scholar 

  77. J. Hamilton, I. Overbo, B. Tromborg, Nucl. Phys. B 60, 443 (1973)

    Article  ADS  Google Scholar 

  78. H. van Haeringen, J. Math. Phys. 18, 927 (1977)

    Article  ADS  Google Scholar 

  79. J.-M. Sparenberg, P. Capel, D. Baye, Phys. Rev. C 81, 011601 (2010)

    Article  ADS  Google Scholar 

  80. Z.R. Iwinski, L. Rosenberg, Phys. Rev. C 29, 349 (1984)

    Article  ADS  Google Scholar 

  81. P. Tischhauser et al., Phys. Rev. C 79, 055803 (2009)

    Article  ADS  Google Scholar 

  82. P. Tischhauser et al., Phys. Rev. Lett. 88, 072501 (2002)

    Article  ADS  Google Scholar 

  83. EPAPS-document No. E-PRVCAN-70-032904 for tables of \(\alpha \)-\(^{12}\text{C}\) phase shift

  84. D. Foreman-Mackey et al., Publ. Astron. Soc. Pac. 125, 306 (2013)

    Article  ADS  Google Scholar 

  85. T. Teichmann, Phys. Rev. 83, 141 (1951)

    Article  ADS  Google Scholar 

  86. S.-I. Ando, Phys. Rev. C 102, 034611 (2020)

    Article  ADS  Google Scholar 

  87. M. Katsuma, Phys. Rev. C 78, 034606 (2008)

    Article  ADS  Google Scholar 

  88. O.L. Ramirez Suarez, J.-M. Sparenberg, Phys. Rev. C 96, 034601 (2017)

    Article  ADS  Google Scholar 

  89. YuV Orlov, B.F. Irgaziev, J.-U. Nabi, Phys. Rev. C 96, 025809 (2017)

    Article  ADS  Google Scholar 

  90. M.L. Avila et al., Phys. Rev. Lett. 114, 071101 (2015)

    Article  ADS  Google Scholar 

  91. N. Oulebsir et al., Phys. Rev. C 85, 035804 (2012)

    Article  ADS  Google Scholar 

  92. C.R. Brune et al., Phys. Rev. Lett. 83, 4025 (1999)

    Article  ADS  Google Scholar 

  93. E. Ryberg, C. Forssen, H.-W. Hammer, L. Platter, Phys. Rev. C 89, 014325 (2014)

    Article  ADS  Google Scholar 

  94. A.K. Rajantie, Nucl. Phys. B 480, 729 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  95. T. Fuchs, J. Gegelia, G. Japaridze, S. Scherer, Phys. Rev. D 68, 056005 (2003)

    Article  ADS  Google Scholar 

  96. S. Ando, H.W. Fearing, Phys. Rev. D 75, 014025 (2007)

    Article  ADS  Google Scholar 

  97. D. Baye, E.M. Tursunov, J. Phys. G Nucl. Part. Phys. 45, 085102 (2018)

    Article  ADS  Google Scholar 

  98. P. Descouvemont, D. Baye, Phys. Lett. B 127, 286 (1983)

    Article  ADS  Google Scholar 

  99. P. Descouvemont, D. Baye, Nucl. Phys. A 459, 374 (1986)

    Article  ADS  Google Scholar 

  100. P. Descouvemont, D. Baye, Phys. Rev. C 36, 1249 (1987)

    Article  ADS  Google Scholar 

  101. P. Dyer, C. Barnes, Nucl. Phys. A 233, 495 (1974)

    Article  ADS  Google Scholar 

  102. A. Redder et al., Nucl. Phys. A 462, 385 (1987)

    Article  ADS  Google Scholar 

  103. J.M.L. Ouellet et al., Phys. Rev. C 54, 1982 (1996)

    Article  ADS  Google Scholar 

  104. G. Roters et al., Eur. Phys. J. A 6, 451 (1999)

    Article  ADS  Google Scholar 

  105. L. Gialanella et al., Eur. Phys. J. A 11, 357 (2001)

    Article  ADS  Google Scholar 

  106. R. Kunz et al., Phys. Rev. Lett. 86, 3244 (2001)

    Article  ADS  Google Scholar 

  107. M. Fey, Ph.D. thesis (Universitat Stuttgart) (2004)

  108. H. Makii et al., Phys. Rev. C 80, 065802 (2009)

    Article  ADS  Google Scholar 

  109. R. Plag et al., Phys. Rev. C 86, 015805 (2012)

    Article  ADS  Google Scholar 

  110. X.D. Tang et al., Phys. Rev. C 81, 045809 (2010)

    Article  ADS  Google Scholar 

  111. D. Schurmann et al., Phys. Lett. B 711, 35 (2012)

    Article  ADS  Google Scholar 

  112. D.E. Alburger, Phys. Rev. 111, 1586 (1958)

    Article  ADS  Google Scholar 

  113. J.K. Bienlein, E. Kalsch, Nucl. Phys. 50, 202 (1964)

    Article  Google Scholar 

  114. D.R. Tilley, H.R. Weller, C.M. Cheves, Nucl. Phys. A 564, 1 (1993)

    Article  ADS  Google Scholar 

  115. O.S. Kirsebom et al., Phys. Rev. Lett. 121, 142701 (2018)

    Article  ADS  Google Scholar 

  116. R.E. Azuma et al., Phys. Rev. C 50, 1194 (1994)

    Article  ADS  Google Scholar 

  117. S. Sanfilippo et al., AIP Conf. Proc. 1645, 387 (2015)

    Article  ADS  Google Scholar 

  118. L. Buchmann et al., Phys. Rev. Lett. 70, 726 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like to thank X. D. Tang, T. Kajino, A. Hosaka, and T. Sato for useful discussions and RCNP, Osaka University for hospitality during his stay when finalizing the work. This work was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education of Korea (NRF-2016R1D1A1B03930122 and NRF-2019R1F1A1040362) and in part by the National Research Foundation of Korea (NRF) grant funded by the Korean government (NRF-2016K1A3A7A09005580).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shung-Ichi Ando.

Additional information

Communicated by Vittorio Somà

Appendix

Appendix

The elastic scattering amplitudes are calculated from the renormalized dressed three-point vertices and the renormalized dressed composite \(^{16}\hbox {O}\) propagators as

$$\begin{aligned} iA_l = -i\varGamma ^{(l)}(k')D^{(l)}(T)\varGamma ^{(l)}(k), \end{aligned}$$
(49)

where \(k'=k\) and \(T=k^2/(2\mu )\), and we have suppressed the indices from the Cartesian tensors.

We have the renormalized dressed three-point vertices for the initial and final Coulomb interaction for \(l=0,1,2,3\) as

$$\begin{aligned} \varGamma ^{(l=0)}(k)= & {} y_{(0)}e^{i\sigma _0}C_\eta \,, \end{aligned}$$
(50)
$$\begin{aligned} \varGamma ^{(l=1)}_i(k)= & {} \frac{y_{(1)}}{\mu }k_ie^{i\sigma _1} \sqrt{1-\eta ^2}C_\eta \,, \end{aligned}$$
(51)
$$\begin{aligned} \varGamma ^{(l=2)}_{ij}(k)= & {} \frac{y_{(2)}}{\mu ^2}15e^{i\sigma _2}C_2\left( k_ik_j -\frac{1}{3}\delta _{ij}k^2 \right) \,, \end{aligned}$$
(52)
$$\begin{aligned} \varGamma ^{(l=3)}_{ijk}(k)= & {} \frac{y_{(3)}}{\mu ^3}105e^{i\sigma _3}C_3 \nonumber \\&\times \left[ k_ik_jk_k -\frac{1}{5}k^2\left( \delta _{ij}k_k + \delta _{ik}k_j + \delta _{jk}k_i \right) \right] ,\nonumber \\ \end{aligned}$$
(53)

where

$$\begin{aligned} C_2= & {} \frac{1}{30}C_\eta \sqrt{ (1+\eta ^2)(4+\eta ^2) }, \end{aligned}$$
(54)
$$\begin{aligned} C_3= & {} \frac{1}{630}C_\eta \sqrt{ (1+\eta ^2)(4+\eta ^2)(9+\eta ^2) }\,. \end{aligned}$$
(55)

We have the renormalized dressed composite \(^{16}\hbox {O}\) propagators for \(l=0,1,2,3\) as

$$\begin{aligned} D^{(l=0)}(T)= & {} \frac{2\pi }{\mu y_{(0)}^2}\frac{1}{-K_0(k)+2\kappa H_0(k)}\,, \end{aligned}$$
(56)
$$\begin{aligned} D^{(l=1)}_{i,x}(T)= & {} P^{(l=1)}_{i,x} \frac{6\pi \mu }{y_{(1)}^2} \frac{1}{-K_1(k)+2\kappa H_1(k)}, \end{aligned}$$
(57)
$$\begin{aligned} D^{(l=2)}_{ij,xy}(T)= & {} \frac{3}{2}P_{ij,xy}^{(l=2)}\frac{10\pi \mu ^3}{y_{(2)}^2} \frac{1}{-K_2(k)+2\kappa H_2(k)}, \end{aligned}$$
(58)
$$\begin{aligned} D^{(l=3)}_{ijk,xyz}(T)= & {} \frac{5}{2}P^{(l=3)}_{ijk,xyz} \frac{14\pi \mu ^5}{y_{(3)}^2} \frac{1}{-K_3(k)+2\kappa H_3(k)}, \end{aligned}$$
(59)

where \(P_{i,x}^{(l=1)}\), \(P^{(l=2)}_{ij,xy}\), and \(P^{(l=3)}_{ijk,xyz}\) are the projection operators which satisfy the relation, \(P=PP\), and we have

$$\begin{aligned} P^{(l=1)}_{i,x}= & {} \delta _{ix}, \end{aligned}$$
(60)
$$\begin{aligned} P^{(l=2)}_{ij,xy}= & {} \frac{1}{2}\left( \delta _{ix}\delta _{jy} + \delta _{iy}\delta _{jx} - \frac{2}{3}\delta _{ij}\delta _{xy} \right) , \end{aligned}$$
(61)
$$\begin{aligned} P^{(l=3)}_{ijk,xyz}= & {} \frac{1}{6}\left[ \frac{}{} \delta _{ix}\delta _{jy}\delta _{kz} + \text{5 } \text{ terms } \right. \nonumber \\&\left. -\frac{2}{5}\left( \delta _{ij}\delta _{kx}\delta _{yz} + \text{8 } \text{ terms } \right) \right] \,. \end{aligned}$$
(62)

In addition, the couplings, \(y_{(l)}\) are redundant when one fixes them by using the effective range parameters, conventionally one may choose them as

$$\begin{aligned} y_{(0)}= & {} \sqrt{\frac{2\pi }{\mu }}, \ \ \ y_{(1)} = \sqrt{6\pi \mu }\,, \nonumber \\ y_{(2)}= & {} \sqrt{10\pi \mu ^3}, \ \ \ y_{(3)} = \sqrt{14\pi \mu ^5}. \end{aligned}$$
(63)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ando, SI. Cluster effective field theory and nuclear reactions. Eur. Phys. J. A 57, 17 (2021). https://doi.org/10.1140/epja/s10050-020-00304-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00304-8

Navigation