Skip to main content
Log in

Shape coexistence revealed in the \(N=Z\) isotope \(^{72}\)Kr through inelastic scattering

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The \(N=Z=36\) nucleus \(^{72}\)Kr has been studied by inelastic scattering at intermediate energies. Two targets, \(^{9}\)Be and \(^{197}\)Au, were used to extract the nuclear deformation length, \(\delta _\text {N}\), and the reduced E2 transition probability, B(E2). The previously unknown non-yrast \(2^+\) and \(4^+\) states as well as a new candidate for the octupole \(3^-\) state have been observed in the scattering on the Be target and placed in the level scheme based on \(\gamma -\gamma \) coincidences. The second \(2^+\) state was also observed in the scattering on the Au target and the \(B(E2;\;2^+_2 \rightarrow 0^+_1)\) value could be determined for the first time. Analyzing the results in terms of a two-band mixing model shows clear evidence for a oblate-prolate shape coexistence and can be explained by a shape change from an oblate ground state to prolate deformed yrast band from the first \(2^+\) state. This interpretation is corroborated by beyond mean field calculations using the Gogny D1S interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. The data presented in the paper are available from the corresponding author upon reasonable request.]

References

  1. S. Frauendorf, A. Macchiavelli, Prog. Part. Nucl. Phys. 78, 24 (2014)

    ADS  Google Scholar 

  2. P. Möller, A. Sierk, T. Ichikawa, H. Sagawa, At. Data Nuc. D. Tables 109, 1 (2016)

    ADS  Google Scholar 

  3. F. Becker et al., Nucl. Phys. A 770, 107 (2006)

    ADS  Google Scholar 

  4. E. Clément et al., Phys. Rev. C 75, 054313 (2007)

    ADS  Google Scholar 

  5. E. Bouchez et al., Phys. Rev. Lett. 90, 082502 (2003)

    ADS  Google Scholar 

  6. A. Gade et al., Phys. Rev. Lett. 95, 022502 (2005)

    ADS  Google Scholar 

  7. J.A. Briz et al., Phys. Rev. C 92, 054326 (2015)

    ADS  Google Scholar 

  8. G. de Angelis et al., Phys. Lett. B 415, 217 (1997)

    ADS  Google Scholar 

  9. S.M. Fischer et al., Phys. Rev. Lett. 87, 132501 (2001)

    ADS  Google Scholar 

  10. N.S. Kelsall et al., Phys. Rev. C 64, 024309 (2001)

    ADS  Google Scholar 

  11. C. Andreoiu et al., Phys. Rev. C 75, 041301 (2007)

    ADS  Google Scholar 

  12. H. Iwasaki et al., Phys. Rev. Lett. 112, 142502 (2014)

    ADS  Google Scholar 

  13. P. Möller et al., Phys. Rev. Lett. 103, 212501 (2009)

    ADS  Google Scholar 

  14. A. Petrovici, K. Schmid, A. Faessler, Nucl. Phys. A 708, 190 (2002)

    ADS  Google Scholar 

  15. K. Langanke, D. Dean, W. Nazarewicz, Nucl. Phys. A 728, 109 (2003)

    ADS  Google Scholar 

  16. M. Girod, J.P. Delaroche, A. Görgen, A. Obertelli, Phys. Lett. B 676, 39 (2009)

    ADS  Google Scholar 

  17. J.P. Delaroche et al., Phys. Rev. C 81, 014303 (2010)

    ADS  Google Scholar 

  18. T.R. Rodríguez, Phys. Rev. C 90, 034306 (2014)

    ADS  Google Scholar 

  19. K. Sato, N. Hinohara, Nucl. Phys. A 849, 53 (2011)

    ADS  Google Scholar 

  20. M. Bender, P. Bonche, P.H. Heenen, Phys. Rev. C 74, 024312 (2006)

    ADS  Google Scholar 

  21. Y. Fu et al., Phys. Rev. C 87, 054305 (2013)

    ADS  Google Scholar 

  22. T. Kubo, Prog. Theoret. Exp. Phys. 2012, 03C003 (2012)

    Google Scholar 

  23. S. Takeuchi et al., Nucl. Intr. Methods A 763, 596 (2014)

    ADS  Google Scholar 

  24. S. Nishimura, Prog. Theoret. Exp. Phys. 2012, 03C006 (2012)

    Google Scholar 

  25. S. Agostinelli et al., Nucl. Intr. Methods A 506, 250 (2003)

    ADS  Google Scholar 

  26. E. Bouchez. PhD thesis, Université Louis Pasteur, Strasbourg (2003)

  27. V. Vaquero et al., Phys. Rev. C 99, 034306 (2019)

    ADS  MathSciNet  Google Scholar 

  28. I.J. Thompson, Comput. Phys. Rep. 7, 167 (1988)

    ADS  Google Scholar 

  29. A. Moro (2018) Private communication

  30. T. Furumoto et al., Phys. Rev. C 85, 044607 (2012)

    ADS  Google Scholar 

  31. T. Furumoto, Y. Sakuragi, Y. Yamamoto, Phys. Rev. C 80, 044614 (2009)

    ADS  Google Scholar 

  32. L.C. Chamon et al., Phys. Rev. C 66, 014610 (2002)

    ADS  Google Scholar 

  33. S. Okabe, Y. Abe, Prog. Theoret. Phys. 61, 1049 (1979)

    ADS  Google Scholar 

  34. Y. Hirabayashi, S. Okabe, Y. Sakuragi, Phys. Lett. B 221, 227 (1989)

    ADS  Google Scholar 

  35. T. Kibédi, R. Spear, Atom. Data Nucl. Data Tables 80, 35 (2002)

    ADS  Google Scholar 

  36. A. Winther, K. Alder, Nucl. Phys. A 319, 518 (1979)

    ADS  Google Scholar 

  37. M. Hussein, R. Rego, C. Bertulani, Phys. Rep. 201, 279 (1991)

    ADS  Google Scholar 

  38. S. Raman, C. Nestor, P. Tikkanen, Atom. Data Nucl. Data Tables 78, 1 (2001)

    ADS  Google Scholar 

  39. R.B. Piercey et al., Phys. Rev. Lett. 47, 1514 (1981)

    ADS  Google Scholar 

  40. F. Becker et al., Eur. Phys. J. A 4, 103 (1999)

    ADS  Google Scholar 

  41. S.M. Fischer, C.J. Lister, D.P. Balamuth, Phys. Rev. C 67, 064318 (2003)

    ADS  Google Scholar 

  42. M. Anguiano et al., Nucl. Phys. A 696, 467 (2001)

    ADS  Google Scholar 

  43. T.R. Rodríguez, J.L. Egido, Phys. Rev. C 81, 064323 (2010)

    ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank the RIKEN accelerator and BigRIPS teams for providing the high intensity beams. We thank T. Furumoto for providing us with the optical potentials and A. Moro for giving access to an unpublished version of the FRESCO code. This work has been supported by UK STFC under Grant numbers ST/L005727/1 and ST/P003885/1, the Spanish Ministerio de Economía y Competitividad under Grants FPA2011-24553, FPA2014-52823-C2-1-P, and PGC2018-094583-B-I00, the Program Severo Ochoa (SEV-2014-0398), the European Research Council through the ERC Grant No. MINOS-258567, NKFIH (NN128072), and by the ÚNKP-19-4-DE-65 New National Excellence Program of the Ministry of Human Capacities of Hungary. G. K. acknowledges support from the János Bolyai research fellowship of the Hungarian Academy of Sciences. K. W. acknowledges the support from the Spanish Ministerio de Economía y Competitividad RYC-2017-22007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Wimmer.

Additional information

Communicated by Calin Alexandru Ur

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wimmer, K., Arici, T., Korten, W. et al. Shape coexistence revealed in the \(N=Z\) isotope \(^{72}\)Kr through inelastic scattering. Eur. Phys. J. A 56, 159 (2020). https://doi.org/10.1140/epja/s10050-020-00171-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00171-3

Navigation