Skip to main content
Log in

Study of excited states and observation of collective level structures in the odd–odd nucleus \({}^{194}\)Bi

  • Regular Article – Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

High-spin states of the odd–odd \({}^{194}\)Bi nucleus have been studied by means of nuclear spectroscopy for the first time. Two low-lying rotational bands were observed. The positive-parity band built on a short-lived isomeric state 633 keV above the \(\alpha \) and \(\beta \) decaying long-lived (10\(^-\)) state is assigned a \({\pi i_{13/2} \otimes \nu i_{13/2 }^{-1}}\) configuration, while the other band is attributed to the \({\pi h_{9/2} \otimes \nu i_{13/2 }^{-1}}\) configuration. Both of these bands are assumed to have oblate shape. Three band-like structures composed predominantly of \(\Delta I = 1\) transitions were also found. One of the shears band candidates is firmly linked to the lower lying level structures whereas for the other two links to lower-lying structures remain missing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: At present, the data are located on the disk storage, which is not available to public.]

References

  1. A.K. Jain et al., Rev. Mod. Phys. 70(3), 843 (1998)

    ADS  Google Scholar 

  2. A. Herzáň et al., Phys. Rev. C 92, 044310 (2015)

    ADS  Google Scholar 

  3. A. Herzáň et al., Phys. Rev. C 96, 014301 (2017)

    ADS  Google Scholar 

  4. P. Nieminen et al., Phys. Rev. C 69, 064326 (2004)

    ADS  Google Scholar 

  5. B. Fant et al., J. Phys. G 17, 319 (1991)

    ADS  Google Scholar 

  6. R.M. Clark et al., Phys. Lett. B 275, 247 (1992)

    ADS  Google Scholar 

  7. G. Baldsiefen et al., Phys. Lett. B 275, 252 (1992)

    ADS  Google Scholar 

  8. A. Kuhnert et al., Phys. Rev. C 46, 133 (1992)

    ADS  Google Scholar 

  9. S. Frauendorf, Nucl. Phys. A 557, 259c (1993)

    ADS  Google Scholar 

  10. A.O. Macchiavelli et al., Phys. Lett. B 450, 1 (1999)

    ADS  Google Scholar 

  11. A. Gadea et al., Phys. Rev. C 55, R1(R) (1997)

    ADS  Google Scholar 

  12. R.M. Clark et al., Phys. Rev. Lett. 82, 3220 (1999)

    ADS  Google Scholar 

  13. F. Brandolini et al., Phys. Lett. B 388, 468 (1996)

    ADS  Google Scholar 

  14. S. Rajbanshi et al., Phys. Rev. C 94, 044318 (2016)

    ADS  Google Scholar 

  15. R.M. Clark, A.O. Macchiavelli, Annu. Rev. Nucl. Part. Sci. 50, 1 (2000)

    ADS  Google Scholar 

  16. K. Auranen et al., Phys. Rev. C 91, 024324 (2015)

    ADS  Google Scholar 

  17. K. Auranen et al., Phys. Rev. C 97, 024301 (2018)

    ADS  Google Scholar 

  18. J.R. Novak et al., Phys. Rev. C 59, R2989(R) (1999)

    ADS  Google Scholar 

  19. D.J. Hartley et al., Phys. Rev. C 78, 054319 (2008)

    ADS  Google Scholar 

  20. H. Pai et al., Phys. Rev. C 90, 064314 (2014)

    ADS  Google Scholar 

  21. G.K. Mabala et al., Eur. Phys. J. A 25, 49 (2005)

    ADS  Google Scholar 

  22. P.J. Dagnall et al., J. Phys. G: Nucl. Part. Phys. 20, 1591 (1994)

    ADS  Google Scholar 

  23. W.P. Alford et al., Phys. Rev. C 3, 860 (1971)

    ADS  Google Scholar 

  24. U. Hagemann et al., Nucl. Phys. A 197, 111 (1972)

    ADS  Google Scholar 

  25. K. H. Kaun et al., Joint Institute for Nuclear Research, Dubna, Report No. E6-6808, 1972

  26. T. Lönnroth et al., Z. Phys. A 287, 307 (1978)

    ADS  Google Scholar 

  27. T. Lönnroth et al., Phys. Scr. 23, 774 (1981)

    ADS  Google Scholar 

  28. B.V. Thirumala et al., Nucl. Phys. A 362, 71 (1981)

    Google Scholar 

  29. P. van Duppen, P. Decrock, P. Dendooven, M. Huyse, G. Reusen, J. Wauters, Nucl. Phys. A 529, 268 (1991)

    ADS  Google Scholar 

  30. M. Huyse et al., Phys. Rev. C 46, 1209 (1992)

    ADS  Google Scholar 

  31. S. S. Wang, The Methods of Particle and Nuclear Experiments (unpublished), p/ 268

  32. J. Stanja et al., Phys. Rev. C 88, 054304 (2013)

    ADS  Google Scholar 

  33. L. Ghys et al., Phys. Rev. C 100, 054310 (2019)

    ADS  Google Scholar 

  34. R.M. Clark et al., Phys. Rev. C 53, 117 (1996)

    ADS  Google Scholar 

  35. H. Xiaolong, Nucl. Data Sheets 108, 1093 (2007)

  36. X.H. Zhou et al., Phys. Rev. C 54, 2948 (1996)

    ADS  Google Scholar 

  37. G. Zwartz et al., J. Phys. G: Nucl. Part. Phys. 26, 849 (2000)

    ADS  Google Scholar 

  38. M.E. Leino et al., Nucl. Instrum. Methods. Phys. Res. B 99, 653 (1995)

    ADS  Google Scholar 

  39. J. Sarén et al., Nucl. Instr. Meth. A 654, 508 (2011)

    ADS  Google Scholar 

  40. R.D. Page et al., Nucl. Inst. Meth. B 204, 634 (2003)

    ADS  Google Scholar 

  41. I.H. Lazarus et al., IEEE Trans. Nucl. Sci. 48, 567 (2001)

    ADS  Google Scholar 

  42. P. Rahkila, Nucl. Instr. Meth. A 595, 637 (2008)

    ADS  Google Scholar 

  43. D.C. Radford, Nucl. Instrum. Methods Phys. Res. A 361, 297 (1995)

    ADS  Google Scholar 

  44. D.C. Radford, Nucl. Instrum. Methods Phys. Res. A 361, 306 (1995)

    ADS  Google Scholar 

  45. K.H. Schmidt et al., Phys. Lett. B 168, 39 (1986)

    ADS  Google Scholar 

  46. K.S. Krane, R.M. Steffen, R.M. Wheeler, Nucl. Data Tables 11, 351 (1973)

    ADS  Google Scholar 

  47. [39] K. Starosta et al., Nucl. Instrum. Methods Phys. Res., Sect. A 423, 16 (1999)

  48. E. Gueorguieva et al., Nucl. Instr. Meth. A 474, 132 (2001)

    ADS  Google Scholar 

  49. T. Kibedi et al., Nucl. Instrum. Methods Phys. Res. A 589, 202 (2008)

    ADS  Google Scholar 

  50. M. Nyman et al., Eur. Phys. J. A 51, 31 (2015)

    ADS  Google Scholar 

  51. T. Lönnroth et al., Phys. Rev. C 33, 1641 (1986)

    ADS  Google Scholar 

  52. H. Pai et al., Phys. Rev. C 85, 064317 (2012)

    ADS  Google Scholar 

  53. T. Roy et al., Eur. Phys. J. A 51, 153 (2015)

    ADS  Google Scholar 

  54. T. Chapuran et al., Phys. Rev. C 33, 130 (1986)

    ADS  Google Scholar 

  55. S. Frauendorf, Phys. Lett. B 100, 219 (1981)

    ADS  Google Scholar 

  56. F. Dönau, Nucl. Phys. A 471, 469 (1987)

    ADS  Google Scholar 

  57. K. Helariutta et al., Eur. Phys. J. A 6, 289 (1999)

    ADS  Google Scholar 

  58. K. Dybdal et al., Phys. Rev. C 28, 1171 (1983)

    ADS  Google Scholar 

  59. G.D. Dracoulis et al., Phys. Rev. C 60, 014303 (1999)

    ADS  Google Scholar 

  60. G.D. Dracoulis et al., Phys. Rev. C 72, 064319 (2005)

    ADS  Google Scholar 

  61. G. Baldsiefen et al., Phys. Rev. C 54, 1106 (1996)

    ADS  Google Scholar 

  62. A.J. Kreiner, Z. Phys. A 288, 373 (1978)

    ADS  Google Scholar 

  63. J. Van Maldeghem, K. Heyde, Fizika 22, 233 (1990)

    Google Scholar 

  64. A.J. Kreiner et al., Phys. Rev. Lett. 47, 1709 (1981)

    ADS  Google Scholar 

  65. A.N. Andreyev et al., Phys. Rev. C 73, 024317 (2006)

    ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank the personnel at the Accelerator Laboratory of the University of Jyväskylä. AH would like to thank the Slovak Research and Development Agency under contract No. APVV-15-0225, Slovak grant agency VEGA (contract No. 2/0129/17), and the project ITMS code 26210120023, supported by the Research and Development Operational Programme funded by ERDF (30\(\%\)). Fruitful discussions with John L. Wood are much appreciated. This work was also supported by the United Kingdom Science and Technology Facilities Council (STFC) and by the Academy of Finland under the Finnish CoE Programme. The authors would like to thank the GAMMAPOOL European Spectroscopy Resource for the loan of germanium detectors for JUROGAM II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Herzáň.

Additional information

Communicated by Robert Janssen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herzáň, A., Juutinen, S., Auranen, K. et al. Study of excited states and observation of collective level structures in the odd–odd nucleus \({}^{194}\)Bi. Eur. Phys. J. A 56, 165 (2020). https://doi.org/10.1140/epja/s10050-020-00167-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00167-z

Navigation