Inelastic scattering of neutron-rich Ni and Zn isotopes off a proton target

M. L. Cortés et al.
Phys. Rev. C 97, 044315 – Published 19 April 2018

Abstract

Proton inelastic scattering of Ni72,74 and Zn76,80 ions at energies around 235 MeV/nucleon was performed at the Radioactive Isotope Beam Factory and studied using γ-ray spectroscopy. Angular integrated cross sections for direct inelastic scattering to the 21+ and 41+ states were measured. The Jeukenne-Lejeune-Mahaux folding model, extended beyond 200 MeV, was used together with neutron and proton densities stemming from quasiparticle random-phase approximation (QRPA) calculations to interpret the experimental cross sections and to infer neutron to proton matrix element ratios. In addition, coupled-channels calculations with a phenomenological potential were used to determine deformation lengths. For the Ni isotopes, correlations favor neutron excitations, thus conserving the Z=28 gap. A dominance of proton excitation, on the other hand, is observed in the Zn isotopes, pointing to the conservation of the N=50 gap approaching Ni78. These results are in agreement with QRPA and large-scale shell-model calculations.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 23 May 2017
  • Revised 17 November 2017

DOI:https://doi.org/10.1103/PhysRevC.97.044315

©2018 American Physical Society

Physics Subject Headings (PhySH)

Nuclear Physics

Authors & Affiliations

Click to Expand

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 97, Iss. 4 — April 2018

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×