Skip to main content
Log in

Lifetime measurements in shape transition nucleus 188Pt

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Nuclear level lifetimes of high spin states in yrast and non-yrast bands of 188Pt nucleus have been measured using recoil distance plunger setup present at IUAC, Delhi. In the experiment nuclear states of interest were populated via 174Yb(18O,4n)188Pt reaction at a beam energy of 79MeV provided by 15 UD Pelletron accelerator. The extracted \(B(E2\downarrow)\) values show an initial rise up to \(4^{+}\) state and then a nearly constant behavior with spin along yrast band, indicating change of nuclear structure in 188Pt at low spins. The good agreement between experimental and TPSM model \(B(E2\downarrow)\) values up to \( 4^+\) state suggests an increase in axial deformation of the nucleus. The average absolute \(\beta_{2} = 0.20 (3)\) obtained from measured \(B(E2\downarrow)\) values matches well the values predicted by CHFB and IBM calculations for oblate (\( \beta_{2} \sim -0.19\)) and prolate (\(\beta_{2} \sim 0.22\)) shapes. As the lifetime measurements do not yield the sign of \( \beta_{2}\), no definite conclusion can be drawn on the prolate or oblate collectivity of 188Pt on the basis of present measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Hannachi, G. Bastin, M. Porquet et al., Nucl. Phys. A 481, 135 (1988)

    Article  ADS  Google Scholar 

  2. R. Jenssens, P. Chowdhury et al., Phys. Lett. B 131, 35 (1983)

    Article  ADS  Google Scholar 

  3. G.D. Dracoulis, Phys. Rev. C 49, 3324 (1994)

    Article  ADS  Google Scholar 

  4. R. Julin, K. Helariutta, M. Muikku, J. Phys. G 27, R109 (2001)

    Article  ADS  Google Scholar 

  5. G. Lane, G. Dracoulis, A. Byrne et al., Phys. Lett. B 324, 14 (1994)

    Article  ADS  Google Scholar 

  6. W. Reviol, D.E. Ellis et al., Phys. Rev. C 58, R2644 (1998)

    Article  ADS  Google Scholar 

  7. D. Rupnik, E.F. Zganjar et al., Phys. Rev. C 58, 771 (1998)

    Article  ADS  Google Scholar 

  8. Kris Heyde, John L. Wood, Rev. Mod. Phys. 83, 1467 (2011) and references therein

    Article  ADS  Google Scholar 

  9. B. Roussière et al., Hyperfine Interact. 43, 473 (1988)

    Article  ADS  Google Scholar 

  10. J.K.P. Lee et al., Phys. Rev. C 38, 2985 (1988)

    Article  ADS  Google Scholar 

  11. P.G. Varmette et al., Phys. Lett. B 410, 103 (1997)

    Article  ADS  Google Scholar 

  12. Lu Guo, J.A. Maruhn, P.G. Reinhard, Phys. Rev. C 76, 034317 (2007)

    Article  ADS  Google Scholar 

  13. Kris Heyde, John L. Wood, Rev. Mod. Phys. 83, 1467 (2011)

    Article  ADS  Google Scholar 

  14. M. Bender, P. Bonche, P.H. Heenen, Phys. Rev. C 74, 024312 (2006)

    Article  ADS  Google Scholar 

  15. C. Chandler et al., Phys. Rev. C 56, R2924 (1997)

    Article  ADS  Google Scholar 

  16. F. Becker et al., Eur. Phys. J. A 4, 103 (1999)

    Article  ADS  Google Scholar 

  17. E. Bouchez et al., Phys. Rev. Lett. 90, 2444 (1995)

    Google Scholar 

  18. J.E. Gracía, K. Heyde et al., Phys. Rev. C 89, 034313 (2014)

    Article  ADS  Google Scholar 

  19. P. Buganu et al., Nucl. Part. Phys. 42, 105106 (2015)

    Article  ADS  Google Scholar 

  20. G.H. Bhat et al., Phys. Rev. C 86, 047307 (2012)

    Article  ADS  Google Scholar 

  21. K. Nomura et al., Phys. Rev. C 84, 054316 (2011)

    Article  ADS  Google Scholar 

  22. Bao-An Bian et al., Phys. Rev. C 75, 014312 (2007)

    Article  ADS  Google Scholar 

  23. E.A. McCutchan et al., Phys. Rev. C 71, 061301(R) (2005)

    Article  ADS  Google Scholar 

  24. J.P. Delaroche et al., Phys. Rev. C 81, 014303 (2010)

    Article  ADS  Google Scholar 

  25. U. Garg et al., Phys. Lett. B 180, 319 (1986)

    Article  ADS  Google Scholar 

  26. G.D. Dracoulis et al., J. Phys. G 12, L97 (1986)

    Article  ADS  Google Scholar 

  27. J.C. Walpe, U. Garg et al., Phys. Rev. C 85, 057302 (2012)

    Article  ADS  Google Scholar 

  28. A. Arima, F. Iachello, Phys. Rev. Lett. 35, 1069 (1975)

    Article  ADS  Google Scholar 

  29. R. Bengtsson, Nucl. Phys. A 520, 201c (1990)

    Article  ADS  Google Scholar 

  30. S.K. Chamoli et al., Phys. Rev. C 66, 024307 (2002)

    Article  ADS  Google Scholar 

  31. S.K. Chamoli et al., Phys. Rev. C 69, 034310 (2004)

    Article  ADS  Google Scholar 

  32. H.-Q. Jin, L.L. Riedinger et al., Phys. Rev. C 53, 2106 (1996)

    Article  ADS  Google Scholar 

  33. D.G. Popescus et al., Phys. Rev. C 55, 1175 (1997)

    Article  ADS  Google Scholar 

  34. M. Carpenter et al., Nucl. Phys. A 513, 125 (1990)

    Article  ADS  Google Scholar 

  35. G. Hebbinghaus et al., Nucl. Phys. A 514, 225 (1990)

    Article  ADS  Google Scholar 

  36. S. Mukhopadhyay, D.C. Biswas et al., Phys. Lett. B 739, 462 (2014)

    Article  ADS  Google Scholar 

  37. L. Yuan et al., Chin. Phys. Lett. 25, 1633 (2008)

    Article  ADS  Google Scholar 

  38. T. Alexander, A. Bell, Nucl. Instrum. Methods 81, 22 (1970)

    Article  ADS  Google Scholar 

  39. P. Ring, P. Schuck, The Nuclear Many Body Problems (Springer-Verlag, Berlin, 1980) p. 244

  40. W. Nazarewicz, M.A. Riley, J.D. Garrett, Nucl. Phys. A 512, 61 (1990)

    Article  ADS  Google Scholar 

  41. Aman Rohilla, C.K. Gupta, in Proceedings of the DAE Symposium on Nuclear Physics, Vol. 59, (2014) p. 276

  42. Aman Rohilla, C.K. Gupta et al., Nucl. Instrum. Methods Phys. Res. A 797, 230 (2015)

    Article  ADS  Google Scholar 

  43. S.K. Chamoli, Nuclear Structure Study at High Spins, ISBN-978-3-8473-7018-5 (LAP Lambert Academic Publishing, 2012)

  44. James F. Zeigler, http://www.srim.org/

  45. J.C. Wells, Report ORNL/TM 9105 (1991)

  46. R. Clark, N. Rowley, J. Phys. G 18, 1515 (1992) and references therein

    Article  ADS  Google Scholar 

  47. R. Rascher et al., Phys. Rev. C 13, 1217 (1976)

    Article  ADS  Google Scholar 

  48. F. James, M. Ross, Comput. Phys. Commun. 10, 343 (1975)

    Article  ADS  Google Scholar 

  49. L. Richter et al., Nucl. Phys. A 319, 221 (1979)

    Article  ADS  Google Scholar 

  50. M. Finger et al., Nucl. Phys. A 188, 369 (1972)

    Article  ADS  Google Scholar 

  51. T.R. Werner, J. Dudek, At. Data Nucl. Data Tables 59, 1 (1995)

    Article  ADS  Google Scholar 

  52. T.R. Werner, J. Dudek, At. Data Nucl. Data Tables 50, 179 (1992)

    Article  ADS  Google Scholar 

  53. S.G. Nilsson, I. Ragnarsson, Shapes and Shells in Nuclear Structure (Cambridge University Press, Cambridge, England, 1995) p. 290.

  54. V.M. Strutinsky, Yad. Fiz. 3, 614 (1966) Nucl. Phys. A 95

    Google Scholar 

  55. J.C. Walpe, U. Garg, arXiv:1204.4661v1 [nucl-ex] (2012)

  56. B. Singh et al., Nucl. Data Sheets 95, 387 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Chamoli.

Additional information

Communicated by R.K. Bhandari

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohilla, A., Gupta, C.K., Singh, R.P. et al. Lifetime measurements in shape transition nucleus 188Pt. Eur. Phys. J. A 53, 64 (2017). https://doi.org/10.1140/epja/i2017-12256-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12256-y

Navigation