Skip to main content

Advertisement

Log in

Proton emission with a screened electrostatic barrier

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Half-lives of proton emission for \( Z\geq 51\) nuclei are calculated within a simple analytical model based on the WKB approximation for the barrier penetration probability which includes the centrifugal and overlapping effects besides the electrostatic repulsion. The model has a single free parameter associated to a Hulthen potential which emulates a Coulomb electrostatic interaction only at short distance. The agreement with experimental data is very good for most of the considered nuclei. Theoretical predictions are made for few cases with uncertain emitting state configuration or incomplete decay information. The model’s assignment of the proton orbital momentum is in agreement with the differentiation of the experimental data by orbital momentum values realized with a newly introduced correlation formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K.P. Jackson, C.U. Cardinal, H.C. Evans, N.A. Jelley, J. Cerny, Phys. Lett. B 33, 281 (1970)

    Article  ADS  Google Scholar 

  2. J. Cerny, J.E. Esterl, R.A. Gough, R.G. Sextro, Phys. Lett. B 33, 284 (1970)

    Article  ADS  Google Scholar 

  3. H. Schatz et al., Phys. Rep. 294, 167 (1998)

    Article  ADS  Google Scholar 

  4. S. Wanajo, Astrophys. J. 647, 1323 (2006)

    Article  ADS  Google Scholar 

  5. R.K. Wallace, S.E. Woosley, Astrophys. J. Suppl. Ser. 45, 389 (1981)

    Article  ADS  Google Scholar 

  6. P.J. Woods, C.N. Davids, Annu. Rev. Nucl. Part. Sci. 47, 541 (1997)

    Article  ADS  Google Scholar 

  7. B. Blank, M. Borge, Prog. Part. Nucl. Phys. 60, 403 (2008)

    Article  ADS  Google Scholar 

  8. M. Pfützner, M. Karny, L.V. Grigorenko, K. Riisager, Rev. Mod. Phys. 84, 567 (2012)

    Article  ADS  Google Scholar 

  9. J.M. Dong, H.F. Zhang, G. Royer, Phys. Rev. C 79, 054330 (2009)

    Article  ADS  Google Scholar 

  10. N.S. Rajeswari, M. Balasubramaniam, Eur. Phys. J. A 50, 105 (2014)

    Article  ADS  Google Scholar 

  11. C.L. Guo, G.L. Zhang, Eur. Phys. J. A 50, 187 (2014)

    Article  ADS  Google Scholar 

  12. Y. Qian, Z. Ren, Eur. Phys. J. A 52, 68 (2016)

    Article  ADS  Google Scholar 

  13. L. Ferreira, E. Maglione, P. Ring, Phys. Lett. B 701, 508 (2011)

    Article  ADS  Google Scholar 

  14. Q. Zhao, J.M. Dong, J.L. Song, W.H. Long, Phys. Rev. C 90, 054326 (2014)

    Article  ADS  Google Scholar 

  15. Y. Lim, X. Xia, Y. Kim, Phys. Rev. C 93, 014314 (2016)

    Article  ADS  Google Scholar 

  16. E.L. Medeiros, M.M.N. Rodrigues, S.B. Duarte, O.A.P. Tavares, Eur. Phys. J. A 34, 417 (2007)

    Article  ADS  Google Scholar 

  17. C. Qi, D.S. Delion, R.J. Liotta, R. Wyss, Phys. Rev. C 85, 011303(R) (2012)

    Article  ADS  Google Scholar 

  18. D. Ni, Z. Ren, Rom. J. Phys. 57, 407 (1012)

    Google Scholar 

  19. A. Zdeb, M. Warda, C.M. Petrache, K. Pomorski, Eur. Phys. J. A 52, 323 (2016)

    Article  ADS  Google Scholar 

  20. L. Hulthen, Ark. Mat. Astron. Fys. A 28, 52 (1942)

    MathSciNet  Google Scholar 

  21. L. Hulthen, M. Sugawara, S. Flugge (Editors), Handbuch der Physik (Springer, 1957)

  22. M. Balasubramaniam, N. Arunachalam, Phys. Rev. C 71, 014603 (2005)

    Article  ADS  Google Scholar 

  23. R.E. Langer, Phys. Rev. 51, 669 (1937)

    Article  ADS  Google Scholar 

  24. E.D. Filho, R.M. Ricotta, Mod. Phys. Lett. A 10, 1613 (1995)

    Article  ADS  Google Scholar 

  25. D.S. Delion, R.J. Liotta, R. Wyss, Phys. Rev. Lett. 96, 072501 (2006)

    Article  ADS  Google Scholar 

  26. D.S. Delion, R.J. Liotta, R. Wyss, Phys. Rep. 424, 113 (2006)

    Article  ADS  Google Scholar 

  27. Z. Liu et al., Phys. Lett. B 702, 24 (2011)

    Article  ADS  Google Scholar 

  28. M.C. Lopes, E. Maglione, L.S. Ferreira, Phys. Lett. B 673, 15 (2009)

    Article  ADS  Google Scholar 

  29. M. Wang et al., Chin. Phys. C 36, 1603 (2012)

    Article  ADS  Google Scholar 

  30. D. DE Frenne, E. Jacobs, Nucl. Data Sheets 105, 775 (2005)

    Article  ADS  Google Scholar 

  31. M. Petri et al., Phys. Rev. C 76, 054301 (2007)

    Article  ADS  Google Scholar 

  32. S. Kumar, J. Chen, F.G. Kondev, Nucl. Data Sheets 137, 1 (2016)

    Article  ADS  Google Scholar 

  33. G. Audi et al., Chin. Phys. C 36, 1157 (2012)

    Article  Google Scholar 

  34. Balraj Singh, ENSDF evaluation (2015)

  35. C.N. Davids et al., Phys. Rev. C 69, 011302(R) (2004)

    Article  ADS  Google Scholar 

  36. N. Nica, Nucl. Data Sheets 108, 1287 (2007)

    Article  ADS  Google Scholar 

  37. N. Nica, Nucl. Data Sheets 122, 1 (2014)

    Article  ADS  Google Scholar 

  38. A.P. Robinson et al., Eur. Phys. J. A 25, 155 (2005)

    Article  Google Scholar 

  39. S.K. Basu, A.A. Sonzogni, Nucl. Data Sheets 114, 435 (2013)

    Article  ADS  Google Scholar 

  40. M.J. Taylor et al., Phys. Rev. C 91, 044322 (2015)

    Article  ADS  Google Scholar 

  41. P. Möller, J.R. Nix, K.-L. Kratz, At. Data Nucl. Data Tables 66, 131 (1997)

    Article  ADS  Google Scholar 

  42. F. Wang et al., Phys. Lett. B 770, 83 (2017)

    Article  ADS  Google Scholar 

  43. N. Nica, Nucl. Data Sheets 132, 1 (2016)

    Article  Google Scholar 

  44. C.W. Reich, Nucl. Data Sheets 113, 157 (2012)

    Article  ADS  Google Scholar 

  45. C.W. Reich, Nucl. Data Sheets 105, 557 (2005)

    Article  ADS  Google Scholar 

  46. M.C. Drummond et al., Phys. Rev. C 89, 064309 (2014)

    Article  ADS  Google Scholar 

  47. C. Scholey et al., J. Phys. G: Nucl. Part. Phys. 31, S1719 (2005)

    Article  Google Scholar 

  48. S.-c. WU, Nucl. Data Sheets 106, 619 (2005)

    Article  ADS  Google Scholar 

  49. B.A. Brown, Phys. Rev. C 46, 811 (1992)

    Article  ADS  Google Scholar 

  50. M. Horoi, J. Phys. G: Nucl. Part. Phys. 30, 954 (2004)

    Article  ADS  Google Scholar 

  51. I. Silisteanu, A.I. Budaca, At. Data Nucl. Data Tables 98, 1096 (2012)

    Article  ADS  Google Scholar 

  52. A.I. Budaca, I. Silisteanu, Phys. Rev. C 88, 044618 (2013)

    Article  ADS  Google Scholar 

  53. A.I. Budaca, R. Budaca, I. Silisteanu, Nucl. Phys. A 951, 60 (2016)

    Article  ADS  Google Scholar 

  54. H. Geiger, J.M. Nuttall, Phylos. Mag. 22, 613 (1911)

    Article  Google Scholar 

  55. Y.Z. Wang, S.J. Wang, Z.Y. Hou, J.Z. Gu, Phys. Rev. C 92, 064301 (2015)

    Article  ADS  Google Scholar 

  56. C. Qi, F.R. Xu, R.J. Liotta, R. Wyss, Phys. Rev. Lett. 103, 072501 (2009)

    Article  ADS  Google Scholar 

  57. C. Qi, F.R. Xu, R.J. Liotta, R. Wyss, M.Y. Zhang, C. Asawatangtrakuldee, D. Hu, Phys. Rev. C 80, 044326 (2009)

    Article  ADS  Google Scholar 

  58. A.A. Sonzogni, Nucl. Data Sheets 95, 1 (2002)

    Article  ADS  Google Scholar 

  59. A.P. Robinson et al., Phys. Rev. Lett. 95, 032502 (2005)

    Article  ADS  Google Scholar 

  60. B. Hadinia et al., Phys. Rev. C 80, 064310 (2009)

    Article  ADS  Google Scholar 

  61. J. Tuli, ENSDF evaluation (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Budaca.

Additional information

Communicated by S. Hands

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budaca, R., Budaca, A.I. Proton emission with a screened electrostatic barrier. Eur. Phys. J. A 53, 160 (2017). https://doi.org/10.1140/epja/i2017-12352-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12352-0

Navigation