Skip to main content
Log in

Integral measurement of the 12C(n, p)12B reaction up to 10 GeV

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The integral measurement of the 12C(n, p)12B reaction was performed at the neutron time-of-flight facility n_TOF at CERN. The total number of 12B nuclei produced per neutron pulse of the n_TOF beam was determined using the activation technique in combination with a time-of-flight technique. The cross section is integrated over the n_TOF neutron energy spectrum from reaction threshold at 13.6MeV to 10GeV. Having been measured up to 1GeV on basis of the 235U(n, f ) reaction, the neutron energy spectrum above 200MeV has been re-evaluated due to the recent extension of the cross section reference for this particular reaction, which is otherwise considered a standard up to 200MeV. The results from the dedicated GEANT4 simulations have been used to evaluate the neutron flux from 1GeV up to 10GeV. The experimental results related to the 12C(n, p)12B reaction are compared with the evaluated cross sections from major libraries and with the predictions of different GEANT4 models, which mostly underestimate the 12B production. On the contrary, a good reproduction of the integral cross section derived from measurements is obtained with TALYS-1.6 calculations, with optimized parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Zinkle, A. Möslang, Fusion Eng. Des. 88, 472 (2013)

    Article  Google Scholar 

  2. M. Rebai, A. Milocco, L. Giacomelli et al., J. Instrum. 8, P10007 (2013)

    Article  Google Scholar 

  3. M. Pillon, M. Angelone, A. Krása et al., Nucl. Instrum. Methods A 640, 185 (2011)

    Article  ADS  Google Scholar 

  4. V.E. Ablesimov, E.K. Bonjushkin, A.P. Morosov, in Proceedings of the Neutron Physics Conf., Kiev 1971, Vol. 1 (1971) p. 173

  5. W.E. Kreger, B.D. Kern, Phys. Rev. 113, 890 (1959)

    Article  ADS  Google Scholar 

  6. E.M. Rimmer, P.S. Fisher, Nucl. Phys. A 108, 567 (1968)

    Article  ADS  Google Scholar 

  7. V.V. Bobyr, G.I. Primenko, K.K. Revyuk et al., Izv. Akad. Nauk SSSR, Ser. Fiz. 36, 2621 (1972) (in Russian)

    Google Scholar 

  8. D.A. Kellogg, Phys. Rev. 90, 224 (1953)

    Article  ADS  Google Scholar 

  9. A.J. Koning, S. Hilaire, M.C. Duijvestijn, in International Conference on Nuclear Data for Science and Technology, Nice, France 2007 (EDP Sciences, Les Ulis, France, 2008) p. 211

  10. M.B. Chadwick, L.J. Cox, P.G. Young, A.S. Meigooni, Nucl. Sci. Eng. 123, 17 (1996)

    Google Scholar 

  11. M.B. Chadwick, M. Herman, P. Obložinský et al., Nucl. Data Sheets 112, 2887 (2011)

    Article  ADS  Google Scholar 

  12. Y. Watanabe, K. Kosako, E.S. Sukhovitskii et al., AIP Conf. Proc. 769, 346 (2005)

    Article  ADS  Google Scholar 

  13. K. Shibata, O. Iwamoto, T. Nakagawa et al., J. Nucl. Sci. Technol. 48, 1 (2011)

    Article  Google Scholar 

  14. http://wwwndc.jaea.go.jp/jendl/jendl.html

  15. S. Agostinelli, J. Allison, K. Amako et al., Nucl. Instrum. Methods A 506, 250 (2003)

    Article  ADS  Google Scholar 

  16. C. Guerrero, A. Tsinganis, E. Berthoumieux et al., Eur. Phys. J. A 49, 27 (2013)

    Article  ADS  Google Scholar 

  17. P. Zugec, N. Colonna, D. Bosnar et al., Phys. Rev. C 90, 021601(R) (2014)

    Article  ADS  Google Scholar 

  18. C. Paradela, L. Tassan-Got, L. Audouin et al., Phys. Rev. C 82, 034601 (2010)

    Article  ADS  Google Scholar 

  19. D. Tarrío, L. Tassan-Got, L. Audouin et al., Phys. Rev. C 83, 044620 (2011)

    Article  ADS  Google Scholar 

  20. https://www-nds.iaea.org/standards/

  21. M. Barbagallo, C. Guerrero, A. Tsinganis et al., Eur. Phys. J. A 49, 156 (2013)

    Article  ADS  Google Scholar 

  22. R. Plag, M. Heil, F. Käppeler et al., Nucl. Instrum. Methods A 496, 425 (2003)

    Article  ADS  Google Scholar 

  23. U. Abbondanno, G. Aerts, F. Álvarez et al., Nucl. Instrum. Methods A 538, 692 (2005)

    Article  ADS  Google Scholar 

  24. P. Zugec, M. Barbagallo, N. Colonna et al., Phys. Rev. C 89, 014605 (2014)

    Article  ADS  Google Scholar 

  25. P. Zugec, N. Colonna, D. Bosnar et al., Nucl. Instrum. Methods A 760, 57 (2014)

    Article  ADS  Google Scholar 

  26. R.L. Macklin, J. H. Gibbons, Phys. Rev. 159, 1007 (1967)

    Article  ADS  Google Scholar 

  27. U. Abbondanno, G. Aerts, H. Alvarez et al., Nucl. Instrum. Methods A 521, 454 (2004)

    Article  ADS  Google Scholar 

  28. GEANT4, Physics Reference Manual, available online at http://geant4.cern.ch/

  29. S. Pearlstein, in Symposium on Nuclear Data Evaluation Methodology (Brookhaven National Lab, Upton, NY, 1992)

  30. G. Battistoni, S. Muraro, P.R. Sala et al., AIP Conf. Proc. 896, 31 (2006)

    Article  ADS  Google Scholar 

  31. R.L. Macklin, J. Halperin, R.R. Winters, Nucl. Instrum. Methods 164, 213 (1979)

    Article  ADS  Google Scholar 

  32. S. Lo Meo, M.A. Cortés-Giraldo, C. Massimi et al., Eur. Phys. J. A 51, 160 (2015)

    Article  ADS  Google Scholar 

  33. A.J. Koning, D. Rochman, Nucl. Data Sheets 113, 2841 (2012)

    Article  ADS  Google Scholar 

  34. A. Koning, S. Hilaire, S. Goriely, TALYS-1.6 User Manual, 2013, http://www.talys.eu/

  35. A.E. Taylor, E. Wood, Phil. Mag. 44, 95 (1953)

    Article  Google Scholar 

  36. P.H. Bowen, J.P. Scanlon, G.H. Stafford et al., Nucl. Phys. 22, 640 (1961)

    Article  Google Scholar 

  37. J.R. Morales, L.O. Figueroa, P. Martens et al., Nucl. Instrum. Methods A 300, 312 (1991)

    Article  ADS  Google Scholar 

  38. R. Shane, R.J. Charity, J.M. Elson et al., Nucl. Instrum. Methods A 614, 468 (2010)

    Article  ADS  Google Scholar 

  39. W.P. Abfalterer, F.B. Bateman, F.S. Dietrich et al., Phys. Rev. C 63, 044608 (2001)

    Article  ADS  Google Scholar 

  40. V.I. Strizhak, At. Energ. 2, 68 (1957) (in Russian)

    Article  Google Scholar 

  41. Ju. G. Degtjarev, At. Energ. 19, 1956 (1965) (in Russian)

    Google Scholar 

  42. V.T. Shchebolev, Z.A. Ramendik, Sh.V. Yablokov, At. Energ. 39, 207 (1975) (in Russian)

    Google Scholar 

  43. R.G.P. Voss, R. Wilson, Proc. R. Soc. London A 236, 52 (1956)

    Article  ADS  Google Scholar 

  44. C. Zanelli, P.P. Urone, J.L. Romero et al., Phys. Rev. C 23, 1015 (1981)

    Article  ADS  Google Scholar 

  45. M. Ibaraki, M. Baba, T. Miura et al., J. Nucl. Sci. Technol. Suppl. 2, 405 (2002)

    Article  Google Scholar 

  46. R. Bonetti, A.J. Koning, J.M. Akkermans, P.E. Hodgson, Phys. Rep. 247, 1 (1994)

    Article  ADS  Google Scholar 

  47. D. Mancusi, A. Boudard, J. Cugnon et al., Phys. Rev. C 90, 054602 (2014)

    Article  ADS  Google Scholar 

  48. S. Pedoux, J. Cugnon, Nucl. Phys. A 866, 16 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Žugec.

Additional information

Communicated by M. Guidal

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Žugec, P., Colonna, N., Bosnar, D. et al. Integral measurement of the 12C(n, p)12B reaction up to 10 GeV. Eur. Phys. J. A 52, 101 (2016). https://doi.org/10.1140/epja/i2016-16101-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16101-7

Keywords

Navigation