Skip to main content

Advertisement

Log in

Precise description of nuclear spectra with Gogny energy density functional methods

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The evolution of self-consistent beyond-mean-field techniques (BMF) based on the Gogny interaction to better describe nuclear spectra is presented. In particular, different implementations of symmetry restorations and configuration mixing within the generator coordinate method are discussed. Finally, the results for excitation energies in the magnesium isotopic chain from N = 8 to N = 28 are provided as an example of the performance of those different many-body methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bender, P.-H. Heenen, P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003)

    Article  ADS  Google Scholar 

  2. N. Pillet, V.G. Zelevinsky, M. Dupuis, J.-F. Berger, J.M. Daugas, Phys. Rev. C 85, 044315 (2012)

    Article  ADS  Google Scholar 

  3. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, Berlin, 1980)

  4. J.-P. Delaroche, M. Girod, J. Libert, H. Goutte, S. Hilaire, S. Péru, N. Pillet, G.F. Bertsch, Phys. Rev. C 81, 014303 (2010)

    Article  ADS  Google Scholar 

  5. T. Niksic, Z.P. Li, D. Vretenar, L. Próchniak, J. Meng, P. Ring, Phys. Rev. C 79, 034303 (2009)

    Article  ADS  Google Scholar 

  6. A. Valor, P.-H. Heenen, P. Bonche, Nucl. Phys. A 671, 145 (2000)

    Article  ADS  Google Scholar 

  7. T.R. Rodríguez, J.L. Egido, Phys. Rev. Lett. 99, 062501 (2007)

    Article  ADS  Google Scholar 

  8. T. Niksic, D. Vretenar, P. Ring, Phys. Rev. C 74, 064309 (2006)

    Article  ADS  Google Scholar 

  9. R. Rodríguez-Guzmán, J.L. Egido, L.M. Robledo, Nucl. Phys. A 709, 201 (2002)

    Article  ADS  Google Scholar 

  10. T. Niksic, D. Vretenar, P. Ring, Phys. Rev. C 73, 034308 (2006)

    Article  ADS  Google Scholar 

  11. M. Bender, G.F. Bertsch, P.-H. Heenen, Phys. Rev. C 73, 034322 (2006)

    Article  ADS  Google Scholar 

  12. T.R. Rodríguez, A. Arzhanov, G. Martínez-Pinedo, Phys. Rev. C 91, 044315 (2015)

    Article  ADS  Google Scholar 

  13. N.L. Vaquero, T.R. Rodríguez, J.L. Egido, Phys. Lett. B 704, 520 (2011)

    Article  ADS  Google Scholar 

  14. N.L. Vaquero, J.L. Egido, T.R. Rodríguez, Phys. Rev. C 88, 064311 (2013)

    Article  ADS  Google Scholar 

  15. M. Bender, P.-H. Heenen, Phys. Rev. C 78, 024309 (2008)

    Article  ADS  Google Scholar 

  16. T.R. Rodríguez, J.L. Egido, Phys. Rev. C 81, 064323 (2010)

    Article  ADS  Google Scholar 

  17. J.M. Yao, J. Meng, P. Ring, D. Vretenar, Phys. Rev. C 81, 044311 (2010)

    Article  ADS  Google Scholar 

  18. T.R. Rodríguez, J.L. Egido, Phys. Lett. B 705, 255 (2011)

    Article  ADS  Google Scholar 

  19. J.M. Yao, H. Mei, H. Chen, J. Meng, P. Ring, D. Vretenar, Phys. Rev. C 83, 014308 (2011)

    Article  ADS  Google Scholar 

  20. J.M. Yao, J. Meng, P. Ring, Z.X. Li, Z.P. Li, K. Hagino, Phys. Rev. C 84, 024306 (2011)

    Article  ADS  Google Scholar 

  21. T.R. Rodríguez, J.L. Egido, Phys. Rev. C 84, 051307(R) (2011)

    Article  ADS  Google Scholar 

  22. Y. Fu, H. Mei, J. Xiang, Z.P. Li, J.M. Yao, J. Meng, Phys. Rev. C 87, 054305 (2013)

    Article  ADS  Google Scholar 

  23. T.R. Rodríguez, Phys. Rev. C 90, 034306 (2014)

    Article  ADS  Google Scholar 

  24. B. Bally, B. Avez, M. Bender, P.-H. Heenen, Phys. Rev. Lett. 113, 162501 (2014)

    Article  ADS  Google Scholar 

  25. A. Kamlah, Z. Phys. 216, 52 (1968)

    Article  ADS  Google Scholar 

  26. B. Sabbey, M. Bender, G.F. Bertsch, P.-H. Heenen, Phys. Rev. C 75, 044305 (2007)

    Article  ADS  Google Scholar 

  27. K. Hara, A. Hayashi, P. Ring, Nucl. Phys. A 385, 14 (1982)

    Article  ADS  Google Scholar 

  28. E. Wüst, A. Ansari, U. Mosel, Nucl. Phys. A 435, 477 (1985)

    Article  ADS  Google Scholar 

  29. K. Enami, K. Tanabe, N. Yoshinaga, Phys. Rev. C 59, 135 (1999)

    Article  ADS  Google Scholar 

  30. D. Baye, P.-H. Heenen, Phys. Rev. C 29, 1056 (1984)

    Article  ADS  Google Scholar 

  31. H. Zduńczuk, W. Satuła, J. Dobaczewski, M. Kosmulski, Phys. Rev. C 76, 044304 (2007)

    Article  ADS  Google Scholar 

  32. M. Borrajo, T.R. Rodríiguez, J.L. Egido, Phys. Lett. B 746, 341 (2015)

    Article  ADS  Google Scholar 

  33. M. Borrajo, J.L. Egido, Acta. Phys. Pol. B Proc. Suppl. 8, 567 (2015)

    Article  Google Scholar 

  34. J.L. Egido, M. Borrajo, T.R. Rodríguez, Phys. Rev. Lett. 116, 052502 (2016)

    Article  ADS  Google Scholar 

  35. S. Tagami, Y.R. Shimizu, Phys. Rev. C 93, 024323 (2016)

    Article  ADS  Google Scholar 

  36. J.F. Berger, M. Girod, D. Gogny, Nucl. Phys. A 428, 23 (1984)

    Article  ADS  Google Scholar 

  37. D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific Publishing Co., Singapore, 1988)

  38. M. Anguiano, J.L. Egido, L.M. Robledo, Nucl. Phys. A 696, 467 (2001)

    Article  ADS  Google Scholar 

  39. J.M. Yao, E.F. Zhou, Z.P. Li, Phys. Rev. C 92, 041304 (2015)

    Article  ADS  Google Scholar 

  40. R.N. Bernard, L.M. Robledo, T.R. Rodríguez, Phys. Rev. C 93, 061302(R) (2016)

    Article  ADS  Google Scholar 

  41. F.-Q. Chen, J.L. Egido, Phys. Rev. C 93, 064313 (2016)

    Article  ADS  Google Scholar 

  42. GSI-Darmstadt Prometheus Cluster, https://www.gsi.de/en/work/research/it/hpc/computing.htm

  43. C. Détraz, D. Guillemaud, G. Huber, R. Klapisch, M. Langevin, F. Naulin, C. Thibault, L.C. Carraz, F. Touchard, Phys. Rev. C 19, 164 (1979)

    Article  ADS  Google Scholar 

  44. A. Gade et al., Phys. Rev. Lett. 99, 072502 (2007)

    Article  ADS  Google Scholar 

  45. P. Doornenbal et al., Phys. Rev. Lett. 111, 212502 (2013)

    Article  ADS  Google Scholar 

  46. K. Yoneda et al., Phys. Lett. B 499, 233 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  47. Ensdf Database, http://www.nndc.bnl.gov/ensdf/

  48. T. Motobayashi et al., Phys. Lett. B 346, 9 (1995)

    Article  ADS  Google Scholar 

  49. P. Doornenbal et al., Phys. Rev. C 93, 044306 (2016)

    Article  ADS  Google Scholar 

  50. E. Caurier, F. Nowacki, A. Poves, Phys. Rev. C 90, 014302 (2014)

    Article  ADS  Google Scholar 

  51. M. Shimada, S. Watanabe, S. Tagami, T. Matsumoto, Y.R. Shimizu, M. Yahiro, Phys. Rev. C 93, 064314 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomás R. Rodríguez.

Additional information

Communicated by N. Alamanos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez, T. Precise description of nuclear spectra with Gogny energy density functional methods. Eur. Phys. J. A 52, 190 (2016). https://doi.org/10.1140/epja/i2016-16190-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16190-2

Navigation