Skip to main content
Log in

12C+p resonant elastic scattering in the Maya active target

  • Special Article - Tools for Experiment and Theory
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In a proof-of-principle measurement, the Maya active target detector was employed for a 12C(p, p) resonant elastic scattering experiment in inverse kinematics. The excitation energy region from 0 to 3MeV above the proton breakup threshold in 13N was investigated in a single measurement. By using the capability of the detector to localize the reaction vertex and record the tracks of the recoiling protons, data covering a large solid angle could be utilized, at the same time keeping an energy resolution comparable with that of direct-kinematics measurements. The excitation spectrum in 13N was fitted using the R-matrix formalism. The level parameters extracted are in good agreement with previous studies. The active target proved its potential for the study of resonant elastic scattering in inverse kinematics with radioactive beams, when detection efficiency is of primary importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Bohr, Nature 137, 344 (1936).

    Article  ADS  MATH  Google Scholar 

  2. G. Breit, E. Wigner, Phys. Rev. 49, 519 (1936).

    Article  ADS  MATH  Google Scholar 

  3. G. Goldhaber, R. Williamson, Phys. Rev. 82, 495 (1951).

    Article  ADS  Google Scholar 

  4. S. Darden et al., Nucl. Phys. A 429, 218 (1984).

    Article  ADS  Google Scholar 

  5. K.P. Artemov et al., Sov. J. Nucl. Phys. 52, 406 (1990).

    Google Scholar 

  6. C. Angulo et al., Nucl. Phys. A 716, 211 (2003).

    Article  ADS  Google Scholar 

  7. J.J. He et al., Phys. Rev. C 88, 012801 (2013).

    Article  ADS  Google Scholar 

  8. J. Chen et al., Phys. Rev. C 85, 015805 (2012).

    Article  ADS  Google Scholar 

  9. J.J. He et al., Eur. Phys. J. A 47, 67 (2011).

    Article  ADS  Google Scholar 

  10. Y. Wang et al., Nucl. Phys. A 834, 100c (2010).

    Article  ADS  Google Scholar 

  11. G.V. Rogachev et al., Phys. Rev. C 67, 041603 (2003).

    Article  ADS  Google Scholar 

  12. W. Mittig et al., Nucl. Phys. A 722, C10 (2003).

    Article  ADS  Google Scholar 

  13. C.E. Demonchy et al., Nucl. Instrum. Methods Phys. Res. A 573, 145 (2007).

    Article  ADS  Google Scholar 

  14. M. Caamaño et al., Phys. Rev. C 78, 044001 (2008).

    Article  ADS  Google Scholar 

  15. I. Tanihata et al., Phys. Rev. Lett. 100, 192502 (2008).

    Article  ADS  Google Scholar 

  16. T. Roger et al., Phys. Rev. C 79, 031603 (2009).

    Article  ADS  Google Scholar 

  17. C. Monrozeau et al., Phys. Rev. Lett. 100, 042501 (2008).

    Article  ADS  Google Scholar 

  18. M. Vandebrouck et al., Phys. Rev. Lett. 113, 032504 (2014).

    Article  ADS  Google Scholar 

  19. T. Roger, PhD thesis, Université de Caen/Basse Normandie (2009).

  20. D. Suzuki et al., Phys. Rev. C 87, 054301 (2013).

    Article  ADS  Google Scholar 

  21. P. Van Duppen, K. Riisager, J. Phys. G: Nucl. Part. Phys. 38, 024005 (2011).

    Article  ADS  Google Scholar 

  22. H.L. Jackson, A.I. Galonsky, Phys. Rev. 89, 370 (1953).

    Article  ADS  Google Scholar 

  23. J.C. Armstrong et al., Phys. Rev. 144, 823 (1966).

    Article  ADS  Google Scholar 

  24. H.O. Meyer, G.R. Plattner, I. Sick, Z. Phys. A 279, 41 (1976).

    Article  ADS  Google Scholar 

  25. D. Habs et al., Hyperfine Interact. 129, 43 (2000).

    Article  ADS  Google Scholar 

  26. F. Wenander, JINST 5, C10004 (2010).

    Article  ADS  Google Scholar 

  27. D. Voulot et al., Nucl. Instrum. Methods Phys. Res. B 266, 4103 (2008).

    Article  ADS  Google Scholar 

  28. T. Roger et al., Nucl. Instrum. Methods Phys. Res. A 638, 134 (2011).

    Article  ADS  Google Scholar 

  29. C. Demonchy, PhD thesis, Université de Caen/Basse Normandie (2003). .

  30. J.-C. Santiard, CERN-ECP-94-17 (1994).

  31. M. Caamano Fresco, PhD thesis, Universidade de Santiago de Compostela (2006).

  32. J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).

  33. S. Sambi, PhD thesis, KU Leuven (2015).

  34. A. Lane, R. Thomas, Rev. Mod. Phys. 30, 257 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  35. P. Descouvemont, D. Baye, Rep. Prog. Phys. 73, 036301 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  36. A.F. Gurbich, Nucl. Instrum. Methods Phys. Res. B 136, 60 (1998).

    Article  ADS  Google Scholar 

  37. A.F. Gurbich, Nucl. Instrum. Methods Phys. Res. B 152, 403 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sambi.

Additional information

Communicated by R. Krücken

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sambi, S., Raabe, R., Borge, M.J.G. et al. 12C+p resonant elastic scattering in the Maya active target. Eur. Phys. J. A 51, 25 (2015). https://doi.org/10.1140/epja/i2015-15025-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15025-0

Keywords

Navigation