Skip to main content
Log in

Accelerator-based production of 99Mo: a comparison between the 100Mo(p,x) and 96Zr(α,n) reactions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Innovative accelerator-based production routes for 99Mo (and 99mTc) have been studied, comparing the 100Mo(p,x)99Mo,99mTc and 96Zr(α,n)99Mo reactions, for which a new set of measurement has been made. Theoretical and experimental cross sections have been analysed and used to calculate 99Mo production yields and specific activity (SA), considering fully enriched and commercially available target materials. Results show that the low SA resulting from the p-based route forces the use of alternative generator systems, while the α-based reaction provides very high SA 99Mo but much lower yield. Benefits and drawbacks of direct 99mTc production via the 100Mo(p,2p) reaction are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. OECD NEA (2010) The supply of medical radioisotopes: review of potential Molybdenum-99/Technetium-99m production technologies. OECD NEA, http://www.oecd-nea.org/med-radio/reports/Med-Radio-99Mo-Prod-Tech.pdf

  2. IAEA (2013) Nuclear Energy Series No. NF-T-5.4, Non-HEU production technologies for Molybdenum-99 and Technetium-99m, IAEA, Vienna. http://www-pub.iaea.org/MTCD/Publications/PDF/Pub1589_web.pdf

  3. Government of Canada. Government of Canada Response to the Report of the Expert Review Panel on Medical Isotope Production (2010) https://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/energy/pdf/eneene/sources/uranuc/pdf/isotopes-gc-re-eng.pdf Accessed 2 Dec 2014

  4. Ruth T (2009) Nature 457:536–537

    Article  CAS  Google Scholar 

  5. Gagnon K, Benard F, Kovacs M, Ruth TJ, Schaffer P, Wilson JS, McQuarrie SA (2011) Nucl Med Biol 38:907–916

    Article  CAS  Google Scholar 

  6. Wolterbeek B, Kloosterman JL, Lathouwers D, Rohde M, Winkelman A, Frima L, Wols F (2014) What is wise in the production of 99Mo? A comparison of eight possible production routes. J Radioanal Nucl Chem. doi:10.1007/s10967-014-3188-9

    Google Scholar 

  7. Qaim SM (2012) Radiochim Acta 100:635–651

    Article  CAS  Google Scholar 

  8. Pillai MRA, Dash A, Knapp FF (2013) J Nucl Med 54:313–323

    Article  CAS  Google Scholar 

  9. Richards VN, Mebrahtu E, Lapi SE (2013) Nucl Med Biol 40:939–945

    Article  CAS  Google Scholar 

  10. Starovoitova VN, Tchelidze L, Wells DP (2014) Production of medical radioisotopes with linear accelerators. Appl Radiat Isot 85:39–44

    Article  CAS  Google Scholar 

  11. Ross C, Galea R, Saull P, Davidson W, Brown P, Brown D, Harvey J, Messina G, Wassenaar R, De Jong M (2010) Using the 100Mo photoneutron reaction to meet Canada’s requirement for 99mTc. La Phys au Can 66(1):19–24

    Google Scholar 

  12. Naik H, Suryanarayana SV, Jagadeesan KC, Thakare SV, Joshi PV, Nimje VT, Mittal KC, Goswami A, Venugopal V, Kailas S (2013) An alternative route for the preparation of the medical isotope 99Mo from the 238U(γ, f) and 100Mo(γ, n) reactions. J Radioanal Nucl Chem. doi:10.1007/s10967-012-1958-9

    Google Scholar 

  13. Esposito J, Vecchi G, Pupillo G, Taibi A, Uccelli L, Boschi A, Gambaccini M (2013) Evaluation of 99Mo and 99mTc productions based on a high-performance cyclotron, Sci Technol Nucl Install http://dx.doi.org/10.1155/2013/972381

  14. Uccelli L, Boschi A, Pasquali M, Duatti A, Di Domenico G, Pupillo G, Esposito J, Giganti M, Taibi A, Gambaccini M (2013) Influence of the generator in-growth time on the final radiochemical purity and stability of 99mTc radiopharmaceuticals, Sci Technol Nucl Install http://dx.doi.org/10.1155/2013/379283

  15. Haddad F, Ferrer L, Guertin A, Carlier T, Michel N, Barbet J, Chatal JF (2008) Eur J Nucl Med Mol Imaging 35:1377–1387

    Article  Google Scholar 

  16. Pupillo G, Esposito J, Gambaccini M, Haddad F, Michel N (2014) Experimental cross section evaluation for innovative 99Mo production via the (α, n) reaction on 96Zr target. J Radioanal Nucl Chem. doi:10.1007/s10967-014-3321-9

    Google Scholar 

  17. National Nuclear Data Center (NNDC) (2014) Q-value calculator based on mass values from the 2012 atomic mass evaluation by Audi et al. http://www.nndc.bnl.gov/qcalc/ Accessed April 2014

  18. Qaim SM, Sudar S, Scholten B, Koning AJ, Coenen HH (2014) Appl Radiat Isot 85:101–113

    Article  CAS  Google Scholar 

  19. Koning AJ, Rochman D, van der Marck S et al. (2014) TENDL-2013: TALYS-based evaluated nuclear data library, http://www.talys.eu/tendl-2013.html, Accessed April 2014

  20. Chowdhury DP, Pal S, Saha SK, Gangadharan S (1995) Nucl Instrum Methods B 103:261–266

    Article  CAS  Google Scholar 

  21. Commission on isotopic abundances and atomic weights (CIAAW) (2014) http://www.ciaaw.org/ Accessed April 2014

  22. Rosenthal GB (2014) Particle beam source apparatus, system and method. United States Patent No. US 8,624,502 B2, 7 Jan 2014

  23. Rosenthal GB, Lewin HC (2014) Production of 99Mo using high-current alpha beams, Paper at the Topical Meeting on Molybdenum-99 Technological Development, http://www.mo99.ne.anl.gov/2014/pdfs/ Accessed 2 Dec 2014

  24. Mushtaq A (2012) Curr Radiopharm 5:325–328

    Article  CAS  Google Scholar 

  25. Dash A, Knapp FF Jr, Pillai MRA (2013) Nucl Med Biol 40:167–176

    Article  CAS  Google Scholar 

  26. Zykov MP et al (2001) Radiochemistry 43(3):297–300

    Article  CAS  Google Scholar 

  27. Monroy-Guzman F et al (2012) Appl Radiat Isot 70:103–111

    Article  CAS  Google Scholar 

  28. Chattopadhyay S et al (2014) Pharmaceutical grade sodium [99mTc] pertechnetate from low specific activity 99Mo using an automated 99Mo/99mTc-TCMautosolex generator. J Radioanal Nucl Chem. doi:10.1007/s10967-014-3211-1

    Google Scholar 

  29. Chattopadhyay S, Das MK (2008) Appl Radiat Isot 66(10):1295–1299

    Article  CAS  Google Scholar 

  30. Schenter RE et al. (2012) Medical radioisotopes and methods for producing the same. United States Patent No. US 8,126,104 B2, 28 Feb 2012

  31. Benard F et al (2014) Implementation of multi-curie production of 99mTc by conventional medical cyclotrons. J Nucl Med 55:1017–1022

    Article  CAS  Google Scholar 

  32. Hanemaayer V et al (2014) Solid targets for 99mTc production on medical cyclotrons. J Radioanal Nucl Chem. doi:10.1007/s10967-013-2626-4

    Google Scholar 

  33. Celler A, Hou X, Benard F, Ruth T (2011) Phys Med Biol 56:5469–5484

    Article  CAS  Google Scholar 

  34. Lebeda O, van Lier EJ, Stursa J, Ralis J, Zyuzin A (2012) Assessment of radionuclidic impurities in cyclotron produced 99mTc. Nucl Med Biol 39:1286–1291

    Article  CAS  Google Scholar 

  35. Tarkanyi F, Ditroi F, Hermanne A, Takacs S, Ignatyuk AV (2012) Nucl Instrum Methods B 280:45–73

    Article  CAS  Google Scholar 

  36. Guerin B et al (2010) J Nucl Med 51:13N–16N

    CAS  Google Scholar 

  37. Jalilian AR, Targholizadeh H, Raisali GR, Zandi H, Kamali Dehgan M (2011) DARU. J Pharm Sci 19:187–192

    CAS  Google Scholar 

  38. Hou X, Celler A, Grimes J, Benard F, Ruth T (2012) Phys Med Biol 57:1499–1515

    Article  CAS  Google Scholar 

  39. Gagnon K, Wilson JS, Holt CMB, Abrams DN, McEwan AJB, Mitlin D, McQuarrie SA (2012) Appl Radiat Isot 70:1685–1690

    Article  CAS  Google Scholar 

  40. British Pharmacopoeia Commission (2008) British pharmacopoeia, The Stationery Office, Norwich, UK http://www.pharmacopoeia.org.uk/

  41. United States Pharmacopeia Convention (2005) Official monographs: USP 28, sodium pertechnetate Tc99m injection, United States Pharmacopeia (USP) 28-National Formulary (NF) 23

  42. Dix J, IAEA Activities Supporting Mo-99 Production without the use of HEU, Presentation at the Topical Meeting on Molybdenum-99 Technological Development, http://mo99.ne.anl.gov/2014/pdfs/presentations/S5P3%20Presentation%20Dix.pdf Accessed 2 Dec 2014

Download references

Acknowledgments

Authors would like to thank Charlotte Duchemin (Ecole des Mines de Nantes) and Dr. Paolo Cardarelli (INFN of Ferrara) for their suggestions and support. This work has been performed in collaboration between INFN and GIP ARRONAX, thanks to an Erasmus Placement funds that Gaia Pupillo spent at ARRONAX facility in 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaia Pupillo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pupillo, G., Esposito, J., Haddad, F. et al. Accelerator-based production of 99Mo: a comparison between the 100Mo(p,x) and 96Zr(α,n) reactions. J Radioanal Nucl Chem 305, 73–78 (2015). https://doi.org/10.1007/s10967-015-4091-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4091-8

Keywords

Navigation