Skip to main content
Log in

Direct observation of an isomeric state in 98Rb and nuclear properties of exotic rubidium isotopes measured by laser spectroscopy

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Fast-beam collinear laser spectroscopy experiments on rubidium have been performed at the ISAC radioactive ion beam facility at TRIUMF. Most recently, the neutron-rich 98Rb isotope has been studied for the investigation of shape coexistence. Two long-lived nuclear states in 98Rb have been clearly observed for the first time: a low-spin state, assigned a spin of I = 0, and a high-spin state. The high-spin state is tentatively assigned a spin of I = 3 based on this analysis in combination with gamma decay results. The measured nuclear properties of the two states are presented, alongside unpublished values of the neutron-deficient isotopes investigated previously. The mean-square charge radii of both states in 98Rb are observed to continue along the isodeformation line present after the N = 60 onset of deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.N. Andreyev et al., Nature 405, 430 (2000).

    Article  ADS  Google Scholar 

  2. P. Dabkiewicz et al., Phys. Lett. B 82, 199 (1979).

    Article  ADS  Google Scholar 

  3. P. Möller et al., Phys. Rev. Lett. 103, 212501 (2009).

    Article  ADS  Google Scholar 

  4. K. Heyde, J.L. Wood, Rev. Mod. Phys. 83, 1467 (2011).

    Article  ADS  Google Scholar 

  5. J. Wood et al., Nucl. Phys. A 651, 323 (1999).

    Article  ADS  Google Scholar 

  6. C. Thibault et al., Phys. Rev. C 23, 2720 (1981).

    Article  ADS  Google Scholar 

  7. E. Mané et al., Phys. Rev. Lett. 107, 212502 (2011).

    Article  ADS  Google Scholar 

  8. F. Schussler et al., Nucl. Phys. A 339, 415 (1980).

    Article  ADS  Google Scholar 

  9. M. Keim et al., Nucl. Phys. A 586, 219 (1995).

    Article  ADS  Google Scholar 

  10. F. Buchinger et al., Phys. Rev. C 41, 2883 (1990).

    Article  ADS  Google Scholar 

  11. B. Cheal et al., Phys. Lett. B 645, 133 (2007).

    Article  ADS  Google Scholar 

  12. K. Baczynska et al., J. Phys. G 37, 105103 (2010).

    Article  ADS  Google Scholar 

  13. P. Campbell et al., Phys. Rev. Lett. 89, 082501 (2002).

    Article  ADS  Google Scholar 

  14. B. Cheal et al., Phys. Rev. Lett. 102, 222501 (2009).

    Article  ADS  Google Scholar 

  15. F. Charlwood et al., Phys. Lett. B 674, 23 (2009).

    Article  ADS  Google Scholar 

  16. D.H. Forest et al., J. Phys. G 41, 025106 (2014).

    Article  ADS  Google Scholar 

  17. A. Kumar, M.R. Gunye, Phys. Rev. C 32, 2116 (1985).

    Article  ADS  Google Scholar 

  18. R. Rodriguez-Guzman, P. Sarriguren, L.M. Robledo, Phys. Rev. C 83, 044307 (2011).

    Article  ADS  Google Scholar 

  19. R. Rodriguez-Guzman, P. Sarriguren, L. Robledo, S. Perez-Martin, Phys. Lett. B 691, 202 (2010).

    Article  ADS  Google Scholar 

  20. M. Albers et al., Nucl. Phys. A 899, 1 (2013).

    Article  ADS  Google Scholar 

  21. R. Rodriguez-Guzman, P. Sarriguren, L.M. Robledo, Phys. Rev. C 82, 061302 (2010).

    Article  ADS  Google Scholar 

  22. M. Wang et al., Chin. Phys. C 36, 1603 (2012).

    Article  ADS  Google Scholar 

  23. V. Manea et al., Phys. Rev. C 88, 054322 (2013).

    Article  ADS  Google Scholar 

  24. V.V. Simon et al., Phys. Rev. C 85, 064308 (2012).

    Article  ADS  Google Scholar 

  25. B. Cheal, K.T. Flanagan, J. Phys. G 37, 113101 (2010).

    Article  ADS  Google Scholar 

  26. D. Berdichevsky, F. Tondeur, Z. Phys. A 322, 141 (1985).

    Article  ADS  Google Scholar 

  27. B. Cheal et al., Phys. Rev. C 82, 051302 (2010).

    Article  ADS  Google Scholar 

  28. J. Dilling, R. Krücken, Hyperfine Interact. 225, 111 (2014).

    Article  ADS  Google Scholar 

  29. E. Mané et al., Hyperfine Interact. 199, 357 (2011).

    Article  ADS  Google Scholar 

  30. J. Dilling et al., Int. J. Mass Spectrom. 251, 198 (2006).

    Article  ADS  Google Scholar 

  31. A. Voss et al., Phys. Rev. Lett. 111, 122501 (2013).

    Article  ADS  Google Scholar 

  32. D.A. Steck, http://steck.us/alkalidata.

  33. B. Singh, Z. Hu, Nucl. Data Sheets 98, 335 (2003).

    Article  ADS  Google Scholar 

  34. G. Lhersonneau et al., Phys. Rev. C 65, 024318 (2002).

    Article  ADS  Google Scholar 

  35. K. Blaum, J. Dilling, W. Nörtershäuser, Phys. Scr. 2013, 014017 (2013).

    Article  Google Scholar 

  36. G.H. Fuller, J. Phys. Chem. Ref. Data 5, 835 (1976).

    Article  ADS  Google Scholar 

  37. H. Duong et al., Nucl. Instrum. Methods A 325, 465 (1993).

    Article  ADS  Google Scholar 

  38. B. Cheal, T.E. Cocolios, S. Fritzsche, Phys. Rev. A 86, 042501 (2012).

    Article  ADS  Google Scholar 

  39. V.A. Dzuba, W.R. Johnson, M.S. Safronova, Phys. Rev. A 72, 022503 (2005).

    Article  ADS  Google Scholar 

  40. G. Barwood, P. Gill, W. Rowley, Appl. Phys. B 53, 142 (1991).

    Article  ADS  Google Scholar 

  41. G. Fricke, K. Heilig, Springer Materials - The Landolt-Börnstein Database, Vol. 20 (2004) p. 30.

  42. I. Angeli et al., J. Phys. G 36, 085102 (2009).

    Article  ADS  Google Scholar 

  43. C. Ekström et al., Phys. Scr. 19, 516 (1979).

    Article  ADS  Google Scholar 

  44. C. Ekström et al., Nucl. Phys. A 311, 269 (1978).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. Procter.

Additional information

Communicated by N. Kalantar-Nayestanaki

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Procter, T.J., Behr, J.A., Billowes, J. et al. Direct observation of an isomeric state in 98Rb and nuclear properties of exotic rubidium isotopes measured by laser spectroscopy. Eur. Phys. J. A 51, 23 (2015). https://doi.org/10.1140/epja/i2015-15023-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15023-2

Keywords

Navigation