Skip to main content
Log in

Studies of continuum states in 16 Ne using three-body correlation techniques

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Two-proton decay of the unbound \( T_{z} =-2\) nucleus 16Ne , produced in one-neutron knockout from a 500 MeV/u 17Ne beam, has been studied at GSI. The ground state, at a resonance energy 1.388(15) MeV, ( \( \Gamma =0.082(15)\) MeV) above the 14O +p+p threshold, and two narrow resonances at \( E_{r} =3.220(46)\) MeV and 7.57(6) MeV have been investigated. A comparison of the energy difference between the first excited 2+ state and the 0+ ground state in 16Ne with its mirror nucleus 16C reveals a small Thomas-Ehrman shift (TES) of \( +70(46)\) keV. A trend of the TES for the T = 2 quintet is obtained by completing the known data with a prediction for 16F obtained from an IMME analysis. The decay mechanisms of the observed three resonances were revealed from an analysis of the energy and angular correlations of the 14O +p+p decay products. The ground state decay can be considered as a genuine three-body (democratic) mode and the excited states decay sequentially via states in the intermediate nucleus 15F , the 3.22 MeV state predominantly via the 15F ground-state resonance, while the 7.57 MeV state decays via the 5/2+ resonance in 15F at 2.8 MeV above the 14O +p+p threshold. Further, from an analysis of angular correlations, the spin-parity of the 7.57 MeV state has been determined as \( I^{\pi} =2^{+}\) and assigned as the third 2+ state in 16Ne based on a comparison with 16C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Wamers et al., Phys. Rev. Lett. 112, 132502 (2014)

    Article  ADS  Google Scholar 

  2. R.J. Holt et al., Phys. Lett. B 68, 55 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  3. G.R. Burleson et al., Phys. Rev. C 22, 1180 (1980)

    Article  ADS  Google Scholar 

  4. K. Föhl et al., Phys. Rev. Lett. 79, 3849 (1997)

    Article  ADS  Google Scholar 

  5. G.J. KeKelis et al., Phys. Rev. C 17, 1929 (1978)

    Article  ADS  Google Scholar 

  6. C.J. Woodward, R.E. Tribble, D.M. Tanner, Phys. Rev. C 27, 27 (1983)

    Article  ADS  Google Scholar 

  7. I. Mukha et al., Phys. Rev. C 79, 061301 (2009)

    Article  ADS  Google Scholar 

  8. I. Mukha et al., Phys. Rev. C 82, 054315 (2010)

    Article  ADS  Google Scholar 

  9. K.W. Brown, arXiv:1406.3285v2 [nucl-ex] (2014).

  10. V. Guimarães et al., Phys. Rev. 58, 117 (1998)

    Article  Google Scholar 

  11. F. James, M. Roos, Comput. Phys. Commun. 10, 343 (1975)

    Article  ADS  Google Scholar 

  12. L.V Grigorenko et al., Phys. Rev. Lett. 88, 042502 (2002)

    Article  ADS  Google Scholar 

  13. M. Petri et al., Phys. Rev. C 86, 044329 (2012)

    Article  ADS  Google Scholar 

  14. A.H. Wuosmaa et al., Phys. Rev. Lett. 105, 132501 (2010)

    Article  ADS  Google Scholar 

  15. Y. Satou et al., Phys. Lett. B 728, 462 (2014)

    Article  ADS  Google Scholar 

  16. K. Ogawa et al., Phys. Lett. B 464, 157 (1999)

    Article  ADS  Google Scholar 

  17. R.G. Thomas, Phys. Rev. 88, 1109 (1952)

    Article  ADS  MATH  Google Scholar 

  18. J.B. Ehrman, Phys. Rev. 81, 412 (1951)

    Article  ADS  Google Scholar 

  19. H.T. Fortune, Phys. Lett. B 718, 1342 (2013)

    Article  ADS  Google Scholar 

  20. E. Comay, I. Kelson, A. Zidon, Phys. Lett. B 210, 31 (1988)

    Article  ADS  Google Scholar 

  21. S. Aoyama, Phys. Rev. C 62, 034305 (2000)

    Article  ADS  Google Scholar 

  22. E. Garrido, D.V. Fedorov, A.S. Jensen, Phys. Rev. C 69, 024002 (2004)

    Article  ADS  Google Scholar 

  23. F.C. Barker, Phys. Rev. C 59, 535 (1999)

    Article  ADS  Google Scholar 

  24. D.F. Geesaman et al., Phys. Rev. C 15, 1835 (1977)

    Article  ADS  Google Scholar 

  25. L.V. Grigorenko, M.V. Zhukov, Phys. Rev. C 68, 054005 (2003)

    Article  ADS  Google Scholar 

  26. V.Z. Goldberg et al., Phys. Rev. C 69, 031302 (2004)

    Article  ADS  Google Scholar 

  27. A. Lepine-Szily et al., Nucl. Phys. A 734, 331 (2004)

    Article  ADS  Google Scholar 

  28. F.Q. Guo et al., Phys. Rev. C 72, 034312 (2005)

    Article  ADS  Google Scholar 

  29. R.I. Jibuti, N.B. Krupennikova, V.Yu. Tomchinsky, Nucl. Phys. A 276, 421 (1977)

    Article  ADS  Google Scholar 

  30. N.K. Timofeyuk, P. Descouvemont, Phys. Rev. C 81, 051301 (2010)

    Article  ADS  Google Scholar 

  31. H.T. Fortune, R. Sherr, Phys. Rev. C 87, 057308 (2013)

    Article  ADS  Google Scholar 

  32. A. Negret et al., Phys. Rev. C 71, 047303 (2005)

    Article  ADS  Google Scholar 

  33. H.T. Fortune, R. Sherr, Phys. Rev. C 82, 027310 (2010)

    Article  ADS  Google Scholar 

  34. M. MacCormik, G. Audi, Nucl. Phys. A 925, 61 (2014) 925

    Article  ADS  Google Scholar 

  35. Y.H. Lam et al., At. Nucl. Data Tables 99, 680 (2013)

    Article  ADS  Google Scholar 

  36. M. Wang et al., Chin. Phys. C 36, 1603 (2012)

    Article  ADS  Google Scholar 

  37. D.R. Tilley, H.R. Weller, C.M. Cheves, Nucl. Phys. A 564, 1 (1993)

    Article  ADS  Google Scholar 

  38. H.T. Fortune, Phys. Rev. C 74, 054310 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P. Woods

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marganiec, J., Wamers, F., Aksouh, F. et al. Studies of continuum states in 16 Ne using three-body correlation techniques. Eur. Phys. J. A 51, 9 (2015). https://doi.org/10.1140/epja/i2015-15009-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15009-0

Keywords

Navigation