Skip to main content

Advertisement

Log in

A collective coupled-channel model and mirror state energy displacements

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The spectra of nucleon-nucleus mirror systems allow examination of charge symmetry breaking in nucleon-nucleus interactions. To date, such examination has been performed with studies using microscopic models of structure. Herein we seek characterisation with a coupled-channel model in which the nucleon-nucleus interactions are described using a collective model prescription with the Pauli principle taken into account. The neutron-nucleus Hamiltonian is chosen to give the best match to the compound system spectrum, with emphasis on finding the correct ground state energy relative to the neutron-nucleus threshold. The Coulomb interactions for the proton-nucleus partner of a mirror pair are determined using charge distributions that match the root-mean-square charge radii of the nuclei in question. With the Coulomb interaction so defined modifying the neutron-nucleus Hamiltonian, we then predict a spectrum for the relevant proton-nucleus compound. Discrepancies in that resulting spectrum with measured values we tentatively ascribe to charge-symmetry breaking effects. We consider spectra obtained in this way for the mirror pairs 13C and 13N, 15C and 15F, and 15O and 15N, all to ∼ 10 MeV excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Abegg et al., Phys. Rev. Lett. 75, 1711 (1995).

    Article  ADS  Google Scholar 

  2. K. Okamoto, Phys. Lett. 11, 150 (1964).

    Article  ADS  Google Scholar 

  3. Y. Wu, S. Ishikawa, T. Sasakawa, Phys. Rev. Lett. 64, 1875 (1990).

    Article  ADS  Google Scholar 

  4. J.A. Nolen, J.P. Schiffer, Annu. Rev. Nucl. Sci. 19, 471 (1969).

    Article  ADS  Google Scholar 

  5. B.A. Brown, W.A. Richter, R. Lindsay, Phys. Lett. B 483, 49 (2000).

    Article  ADS  Google Scholar 

  6. Y.H. Lam, N.A. Smirnova, E. Caurier, Phys. Rev. C 87, 054304 (2013) and references cited therein.

    Article  ADS  Google Scholar 

  7. A.P. Zucker et al., Phys. Rev. Lett. 89, 142502 (2002).

    Article  ADS  Google Scholar 

  8. M.A. Bentley, S.M. Lenzi, Prog. Part. Nucl. Phys. 59, 497 (2007).

    Article  ADS  Google Scholar 

  9. T. Myo, K. Kato, Prog. Theor. Exp. Phys. 2014, 083D01 (2014).

    Article  Google Scholar 

  10. Y. Suzuki, K. Ikeda, Phys. Rev. C 38, 410 (1988).

    Article  ADS  Google Scholar 

  11. T. Myo, Y. Kikuchi, K. Kato, Phys. Rev. C 85, 034338 (2012).

    Article  ADS  Google Scholar 

  12. K. Amos, L. Canton, G. Pisent, J.P. Svenne, D. van der Knijff, Nucl. Phys. A 728, 65 (2003).

    Article  ADS  Google Scholar 

  13. V.Z. Goldberg et al., Phys. Rev. C 69, 031302(R) (2004).

    Article  ADS  Google Scholar 

  14. V. Krasnopol’sky, V. Kukulin, Sov. J. Nucl. Phys. 20, 883 (1974).

    Google Scholar 

  15. V. Kukulin, V. Pomerantsev, Ann. Phys. 111, 330 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  16. S. Saito, Prog. Theor. Phys. 41, 705 (1969).

    Article  ADS  Google Scholar 

  17. J. Mitroy, G.G. Ryzhikh, Comput. Phys. Commun. 123, 107 (1999).

    Article  ADS  Google Scholar 

  18. I.A. Ivanov, M.W.J. Bromley, J. Mitroy, Comput. Phys. Commun. 152, 9 (2003).

    Article  ADS  Google Scholar 

  19. L. Canton et al., Phys. Rev. Lett. 94, 122503 (2005).

    Article  ADS  Google Scholar 

  20. K. Amos et al., Nucl. Phys. A 917, 7 (2013).

    Article  ADS  Google Scholar 

  21. L. Cardman et al., Phys. Lett. B 91, 203 (1980).

    Article  ADS  Google Scholar 

  22. E. Ormann et al., Phys. Rev. C 44, 1096 (1991).

    Article  ADS  Google Scholar 

  23. L. Schaller et al., Nucl. Phys. A 379, 523 (1982).

    Article  ADS  Google Scholar 

  24. W. Ruchstuhl et al., Nucl. Phys. A 430, 685 (1984).

    Article  ADS  Google Scholar 

  25. P.E. Hodgson, Nuclear Reactions and Nuclear Structure (Oxford University Press, 1971).

  26. C.W. de Jager, H. de Vries, C. de Vries, At. Data. Nucl. Data Tables 14, 479 (1974).

    Article  ADS  Google Scholar 

  27. H. de Vries, C.W. de Jager, C. de Vries, At. Data. Nucl. Data Tables 36, 495 (1987).

    Article  ADS  Google Scholar 

  28. F. Ajzenberg-Selove, Nucl. Phys. A 523, 1 (1991).

    Article  ADS  Google Scholar 

  29. O. Gritzay, The Total Neutron Cross Section for natural Carbon in the Energy Range 2 to 148 keV, in Proceedings of the International Conference Nuclear Data for Science and Technology, Nice, France, edited by O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin, S. Leray (Springer-Verlag, Berlin, 2007) p. 543.

  30. K. Amos et al., Nucl. Phys. A 879, 132 (2012).

    Article  ADS  Google Scholar 

  31. A. Lépine-Szily et al., Nucl. Phys. A 734, 331 (2004).

    Article  ADS  Google Scholar 

  32. W. Benenson et al., Phys. Rev. C 17, 1939 (1978).

    Article  ADS  Google Scholar 

  33. G.J. Kekelis et al., Phys. Rev. C 17, 1929 (1978).

    Article  ADS  Google Scholar 

  34. S. Grévy, O. Sorlin, N.V. Mau, Phys. Rev. C 56, 2885 (1997).

    Article  ADS  Google Scholar 

  35. I. Mukha et al., Phys. Rev. C 82, 054315 (2010).

    Article  ADS  Google Scholar 

  36. F.Q. Guo et al., Phys. Rev. C 72, 034312 (2005).

    Article  ADS  Google Scholar 

  37. T. Suda et al., Phys. Rev. Lett. 102, 102501 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Fraser.

Additional information

Communicated by F. Nunes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraser, P.R., Amos, K., Canton, L. et al. A collective coupled-channel model and mirror state energy displacements. Eur. Phys. J. A 51, 110 (2015). https://doi.org/10.1140/epja/i2015-15110-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15110-4

Keywords

Navigation