Skip to main content
Log in

Resonance strengths in the 17,18O(p, α)14,15N reactions and background suppression underground

Commissioning of a new setup for charged-particle detection at LUNA

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We report on measurements of resonance strengths and energies for the \( E_{p} = 151\) and 193 keV resonances in the 18O(p,\(\alpha\))15N and 17O(p,\(\alpha\))14N reactions, respectively, obtained during commissioning of a new setup for alpha-particle detection studies at the LUNA underground laboratory. Our values, \(\omega\gamma (151)=164.2\pm 0.9_{stat} {}^{+12.1}_{-11.7} {}_{syst}\) meV and \(\omega\gamma (193)=1.68\pm 0.03_{stat} \pm 0.12_{syst}\) meV, are in excellent agreement with those reported in the literature. New values of resonance energies are \( E_{p}=151.2 \pm 0.3\) keV and \( E_{p}=194.8 \pm 0.3\) keV, respectively, this latter with the highest precision to date. Comparative background measurements in silicon detectors overground and underground were also carried out, yielding up to a factor of 15 in background suppression at LUNA at energies around 200keV. This clearly demonstrates the usefulness of underground measurements in charged-particles experiments, especially at low detection energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Broggini et al., Annu. Rev. Nucl. Part. Sci. 60, 53 (2010)

    Article  ADS  Google Scholar 

  2. H. Costantini et al., Rep. Progr. Phys. 72, 086301 (2009)

    Article  ADS  Google Scholar 

  3. K.M. Nollett et al., Astrophys. J. 582, 1036 (2003)

    Article  ADS  Google Scholar 

  4. M. Lugaro et al., Astron. Astrophys. 461, 657 (2007)

    Article  ADS  Google Scholar 

  5. S. Palmerini et al., Astrophys. J. 764, 128 (2013)

    Article  ADS  Google Scholar 

  6. D.A. Scott et al., Phys. Rev. Lett. 109, 202 (2012)

    Google Scholar 

  7. A. Di Leva et al., Phys. Rev. C 89, 015803 (2014)

    Article  ADS  Google Scholar 

  8. J. Blackmon et al., Phys. Rev. Lett. 74, 2642 (1995)

    Article  ADS  Google Scholar 

  9. M.L. Sergi et al., Phys. Rev. C 82, 032801 (2010)

    Article  ADS  Google Scholar 

  10. H.T. Fortune, Phys. Rev. C 88, 015801 (2013)

    Article  ADS  Google Scholar 

  11. C. Iliadis, Nuclear Physics of Stars (Wiley-VCH Verlag GmbH, 2007)

  12. MIDAS, from http://npg.dl.ac.uk/MIDAS/

  13. A. Caciolli et al., Eur. Phys. J. A 48, 144 (2012)

    Article  ADS  Google Scholar 

  14. J. Ziegler, SRIM 2013.00, from http://srim.org

  15. GEANT 4.9.4.p02, from http://geant4.cern.ch

  16. A. Lemut, LSC (Lemut Simulation Code), a GEANT4 parser for low energy nuclear astrophysics, unpublished

  17. C.G. Bruno, Misura della reazione nell'ambito dell'esperimento LUNA, Master's Thesis Università degli Studi di Milano (2013)

  18. C.J. Griffin, Detection efficiency for the reaction at astrophysical energies: A GEANT4 simulation, Physics Masters Project Report, University of Edinburgh (2013)

  19. A. L'Hoir, Nucl. Instrum. Methods 223, 336 (1984)

    Article  Google Scholar 

  20. G. Bortels, P. Collaers, Appl. Radiat. Isot. 38, 831 (1987)

    Article  Google Scholar 

  21. C.G. Bruno, PhD Thesis, University of Edinburgh, UK, in preparation

  22. D.A. Scott, Underground study of the ^17O(p,)^18F reaction at Gamow energies for Classical Novae, PhD Thesis, University of Edinburgh, UK (2014)

  23. A. Chafa et al., Phys. Rev. C 75, 035810 (2007)

    Article  ADS  Google Scholar 

  24. A. Formicola et al., Nucl. Instrum. Methods A 507, 609 (2003)

    Article  ADS  Google Scholar 

  25. H.W. Becker et al., Z. Phys. A 351, 453 (1995)

    Article  ADS  Google Scholar 

  26. J. Newton et al., Phys. Rev. C 75, 055808 (2007)

    Article  ADS  Google Scholar 

  27. J. Newton et al., Phys. Rev. C 81, 045801 (2010)

    Article  ADS  Google Scholar 

  28. A. Chafa et al., Phys. Rev. Lett. 95, 031101 (2005)

    Article  ADS  Google Scholar 

  29. A. Chafa et al., Phys. Rev. Lett. 96, 019902(E) (2006)

    Article  ADS  Google Scholar 

  30. B.H. Moazen et al., Phys. Rev. C 75, 065801 (2007)

    Article  ADS  Google Scholar 

  31. J. Cruz et al., J. Phys. G: Nucl. Part. Phys. 35, 014004 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  32. G. Knoll, Radiation Detection and Measurement, 3rd edition (Wiley-VCH Verlag GmbH, 2000).

  33. T. Szücs et al., Eur. Phys. J. A 44, 513 (2010)

    Article  ADS  Google Scholar 

  34. M. Junker et al., Phys. Rev. C 57, 5 (1998)

    Article  Google Scholar 

  35. M. Misiaszek et al., Appl. Radiat. Isot. 81, 146 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to M. Aliotta.

Additional information

Communicated by N. Alamanos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LUNA Collaboration., Bruno, C.G., Scott, D.A. et al. Resonance strengths in the 17,18O(p, α)14,15N reactions and background suppression underground. Eur. Phys. J. A 51, 94 (2015). https://doi.org/10.1140/epja/i2015-15094-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15094-y

Keywords

Navigation