Skip to main content
Log in

What is wise in the production of 99Mo? A comparison of eight possible production routes

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The present paper addresses eight possible routes of producing 99Mo, and discusses both yield and 99Mo specific activities (SA) in the context of anticipated worldwide demand. Target dimensions are modelled by considering both limits set by cooling and by inside-target radiation attenuation characteristics. Energy deposition profiles are set up by MCNP6, reaction probabilities are taken from TALYS/TENDL and JANIS codes, and both are used in arriving at the produced 99Mo. The outcomes suggest that U neutron-fission may remain one of the most relevant and efficient means of producing 99Mo at the world-demand level, but that within this domain new developments may surface, such as ADSR or AHR production modes. Accelerator-based 99Mo production is discussed as asking for developments in both target cooling and new concepts in post-EOB upgrading of 99Mo SA, and/or new concepts for 99Mo/99mTc-generators, the latter possibly in both volumes (mass) and 99Mo capacities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Richards P (1989) Technetium-99 m: the early days. BNL-43197 CONF-8909193-1. Brookhaven National Laboratory, New York

  2. Ross C, Galea R, Saull P, Davidson W, Brown P, Brown D, Harvey J, Messina G, Wassenaar R, De Jong M (2010) La Physique au Canada 66:19–24

    Google Scholar 

  3. Report of the Expert Review Panel on Medical Isotope Production (2009) Presented to the Minister of Natural Resources Canada 30 November 2009. 135 pp http://nrcan.gc.ca/eneene/sources/uranuc/pdf/panrep-rapexp-eng.pdf

  4. OECD (2010) The supply of medical radioisotopes, interim report of the OECD/NEA high-level group on security of supply of medical radioisotopes. OECD, Nagoya, http://www.nea.fr/med-radio/reports/HLG-MR-Interim-report.pdf

  5. Pillai MRA, Knapp FF (2012) Q J Nucl Med Mol Im 56(4):385–399

    CAS  Google Scholar 

  6. Van der Marck SC, Koning AJ, Charlton KE (2010) Eur J Nucl Med Mol Im 37:1817–1820

    Article  Google Scholar 

  7. Lyra M, Charalambatou P, Roussou E, Fytros S, Baka I (2011) Hellenic J Nucl Med 14:49–55

    Google Scholar 

  8. Pillai MRA (2011) J Nucl Med 52:15–28

    Google Scholar 

  9. TRIUMF (2008) TRIUMF report of the taskforce on alternatives for medical-isotope production: making medical isotopes. In: Fong A, Meyer TI, Zala K (eds). Generation Printing, Vancouver

  10. Ruth T (2010) La Physique au Canada 66:15–16

    Google Scholar 

  11. Challan MB, Comsan MHN, Abou-Zaid MA (2007) J Nucl Rad Phys 2:1–12

    Google Scholar 

  12. Nikiforov VI, Uvarov VL (2011) Nuclear Instrum Methods B269:3149–3152

    Article  Google Scholar 

  13. Bunatian GG, Nikolenko VG, Popov AB (2009) JINR Communication E6-2009-182 Dubna, Russia www.jinr.ru/Preprints/2009/182%28E6-2009-182%29.pdf

  14. Danon Y, Block R, Harvey J (2010) Topical Meeting on Isotopes for Medical and Industry TANSAO. Trans Am Nucl Soc 103:1081–1082

    Google Scholar 

  15. Gagnon K, Bénard F, Kovacs M, Ruth TJ, Schaffer P, Wilson S, McQuarrie SA (2011) Nucl Med Biol 38:907–916

    Article  CAS  Google Scholar 

  16. AEN-NEA (2010) The supply of medical radioisotopes: review of potential molybdenum-99/technetium-99 m production technologies. AEN-NEA, Nevada, 73 pp

  17. IAEA (2013) Nuclear energy series no. NF-T-5.4 Non-HEU production technologies for Molybdenum-99 and Technetium-99 m. STI/Pub/1589. IAEA, Vienna

  18. Bertsche K (2010) Accelerator production options for 99Mo. SLAC-PUB-14132, California

  19. Technopolis-group (2008) Het Medisch Gebruik van Radioisotopen tot 2025: Een Toekomstverkenning 38 pp

  20. Blackburn BW (2002) High power target development for accelerator-based neutron capture therapy. MIT Thesis, Massachusetts

  21. Silverman I, Yarin AL, Reznik SN, Arenshtam A, Kijet D, Nagler A (2006) Int Heat Mass Tran 49:2782–2792

    Article  CAS  Google Scholar 

  22. Koning AJ, Rochman D, van der Marck S, Kopecky J, Sublet JC, Pomp S, Sjostrand H, Forrest R, Bauge E, Henriksson H, Cabellos O, Goriely S, Leppanen J, Leeb H, Plompen A, Mills R, “TENDL-2013: TALYS-based evaluated nuclear data library”. www.talys.eu/tendl-2013.html

  23. Koning AJ, Rochman D (2012) Modern nuclear data evaluation with the TALYS code system. Nucl Data Sheets 113:2841

    Article  CAS  Google Scholar 

  24. Janis WEB Book; OECD http://www.oecd-nea.org/janisweb/index.html

  25. Schenter RE, Wester DW, Hollenberg GW, Rapko BM, Lumetta GJ (2009) US Patent 2009/0060812 A1

  26. Nagai Y, Hatsukawa Y (2009) J Phys Soc Japan 78:033201

    Article  Google Scholar 

  27. Sabelnikov AV, Maslov OD, Molokanova LG, Gustova MV, Dmitriev SN (2006) Radiochemistry 48:191–194

    Article  CAS  Google Scholar 

  28. IAEA TECDOC-1178 (2000) Handbook on photonuclear data for applications cross-sections and spectra, IAEA, Vienna

  29. Gellie RW (1978) Austr J Phys 21:765–768

    Article  Google Scholar 

  30. Ferrero F (1967) Il Nuovo Cimento 6:585–591

    Article  Google Scholar 

  31. Tkac P, Chemerisov S, Makarashvili V, VandeGrift GF, Harvey J (2011) Development activities in support of accelerator production of 99Mo production through the γ/n reaction on 100Mo. Mo-99 2011—Molybdenum-99 Topical Meeting. December 4–7 (2011) La Fonda Hotel, Santa Fe, New Mexico

  32. Qaim SM, Sudár S, Scholten B, Koning AJ, Coenen HH (2014) Appl Rad Isot 85:101–113. doi:10.1016/j.apradiso.2013.10.004

    Article  CAS  Google Scholar 

  33. Breeman WAP, Fröberg AC, De Blois E, Van Gameren A, Melis M, De Jong M, Maina T, Nock BA, Erion JL, Mäcke HR, Krenning EP (2008) Nucl Med Biol 35:839–849

    Article  CAS  Google Scholar 

  34. Naik H, Suryanarayana SV, Jagadeesan KC, Thakare SV, Joshi PV, Nimje VT, Mittal KC, Goswami A, Venugopal V, Kailas S (2013) J Radioanal Nucl Chem 295:807–816. doi:10.1007/s10967-012-1958-9

    Article  CAS  Google Scholar 

  35. NPL http://www.kayelaby.npl.co.uk/atomic_and_nuclear_physics/4_7/4_7_2.html#p545

  36. Gerasimov AS (1989) Atomnaya Énergiya 67:104–108

    CAS  Google Scholar 

  37. Sameh AA, Ache HJ (1987) Radiochim Acta 41:65–72

    Google Scholar 

  38. Baumgärtner F (1961) Table of neutron activation constants. Karl Thiemig KG Muenchen, Carson

    Google Scholar 

  39. El Abd A (2010) J Radioanal Nucl Chem 284:321–326. doi:10.1007/s10967-010-0487-7

    Article  Google Scholar 

  40. Asif M, Mushtaq A (2010) J Radioanal Nuc. Chem 284:439–442. doi:10.1007/s10967-010-0490-z

    Article  CAS  Google Scholar 

  41. Denkova AG, Terpstra BE, Steinbach OM, ten Dam J, Wolterbeek HTh (2013) Separ Sci Technol 48:1331–1338. doi:10.1080/01496395.2012.736443

    Article  CAS  Google Scholar 

  42. Tomar BS, Steinebach OM, Terpstra BE, Bode P, Wolterbeek HTh (2010) Radiochim Acta 98:499–506. doi:10.1524/ract.2010.1744

    Article  CAS  Google Scholar 

  43. OECD (2010) (NEA no. 6967) The supply of medical radioisotopes. In: An economic study of the molybdenum-99 supply Chain. OECD, Venice

  44. IAEA TECDOC-1601 (2008) Homogeneous aqueous solution nuclear reactors for the production of Mo-99 and other short-lived Radioisotopes. IAEA, Vienna

  45. BNL-94462-2010 (2010) Aqueous homogeneuous reactor technical panel report

  46. Chuvlin DU, Meister JD, Abalin SS, Ball RM, Grigoriev GY, Kvostionov VE, Markovskij DV, Nordyke HW, Pavshook VA (2003) J Radioanal Nucl Chem 257:59–63

    Article  Google Scholar 

  47. Kloosterman JL, Huisman MV, Rohde M (2014) The role of reactor physics toward a sustainable future. In: PHYSOR 2014. The bWestin Myako, Kyoto, Japan. Sept 28–October 3 (on CD-ROM, submitted)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert Wolterbeek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolterbeek, B., Kloosterman, J.L., Lathouwers, D. et al. What is wise in the production of 99Mo? A comparison of eight possible production routes. J Radioanal Nucl Chem 302, 773–779 (2014). https://doi.org/10.1007/s10967-014-3188-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3188-9

Keywords

Navigation