Skip to main content
Log in

Continuum shell model and nuclear physics at the edge of stability

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Studies of nuclei far from the valley of stability are currently in the center of modern nuclear physics. For such loosely bound systems, the continuum effects are vitally important. We develop the continuum shell model based on an effective non-Hermitian Hamiltonian. This rigorous quantum-mechanical method is powerful for description of open quantum systems unifying their structure and reactions. The formalism is explained and examples of its application are given; the results are in a very good agreement with recent experiments on exotic nuclei. We show also how this approach can be successfully applied to a general problem of a signal transmission through an open quantum system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Feshbach, Ann. Rev. Nucl. Sci. 8, 49 (1958).

    Article  ADS  Google Scholar 

  2. C. Mahaux and H. A. Weidenmüller, Shell Model Approach to Nuclear Reactions (North-Holland, Amsterdam, 1969).

    Google Scholar 

  3. N. Auerbach and V. Zelevinsky, Rep. Prog. Phys. 74, 106301 (2011).

    Article  ADS  Google Scholar 

  4. C. A. Engelbrecht and H. A. Weidenmüller, Phys. Rev. C 8, 859 (1973).

    Article  ADS  Google Scholar 

  5. L. Durand, Phys. Rev. D 14, 3174 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  6. P. Descouvemont and D. Baye, Rep. Prog. Phys. 73, 036301 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  7. P. Kleinwächter and I. Rotter, Phys. Rev. C 32, 1742 (1985).

    Article  ADS  Google Scholar 

  8. I. Rotter, Rep. Prog. Phys. 54, 635 (1991).

    Article  ADS  Google Scholar 

  9. A. Volya and V. Zelevinsky, Phys. Rev. C 67, 054322 (2003).

    Article  ADS  Google Scholar 

  10. A. Volya and V. Zelevinsky, Phys. Rev. Lett. 94, 052501 (2005).

    Article  ADS  Google Scholar 

  11. A. Volya and V. Zelevinsky, Phys. Rev. C 74, 064314 (2006).

    Article  ADS  Google Scholar 

  12. N. Michel, W. Nazarewicz, M. Ploszajczak, and J. Okolowicz, Phys. Rev. C 67, 054311 (2003).

    Article  ADS  Google Scholar 

  13. N. Michel, W. Nazarewicz, M. Ploszajczak, and T. Vertse, J. Phys. G 36, 013101 (2009).

    Article  ADS  Google Scholar 

  14. E. Lunderberg et al., Phys. Rev. Lett. 108, 142503 (2012).

    Article  ADS  Google Scholar 

  15. A. Volya, Phys. Rev. C 79, 044308 (2009).

    Article  ADS  Google Scholar 

  16. G. V. Rogachev, J. J. Kolata, A. Volya, et al., Phys. Rev. C 75, 014603 (2007).

    Article  ADS  Google Scholar 

  17. E. K. Warburton and B. A. Brown, Phys. Rev. C 46, 923 (1992).

    Article  ADS  Google Scholar 

  18. A. I. Baz, I. B. Zeldovich, and A. M. Perelomov, Scattering, Reactions and Decay in Nonrelativistic Quantum Mechanics (Israel Program for Scientific Translations, Jerusalem, 1969).

    Google Scholar 

  19. A. Volya, EPJWeb Conf. 38, 03003 (2012).

    Article  Google Scholar 

  20. C. R. Hoffman et al., Phys. Lett. B 672, 17 (2009); R. Kanungo et al., Phys. Rev. Lett. 102, 152501 (2009); C. R. Hoffman et al., Phys. Rev. C 83, 031303(R) (2011).

    Article  ADS  Google Scholar 

  21. C. R. Hoffman et al., Phys. Rev. Lett. 100, 152502 (2008).

    Article  ADS  Google Scholar 

  22. E. Lunderberg et al., Phys. Rev. Lett. 108, 142503 (2012).

    Article  ADS  Google Scholar 

  23. G. Hagen et al., Phys. Rev. Lett. 108, 242501 (2012).

    Article  ADS  Google Scholar 

  24. Z. Kohley et al., Phys. Rev. Lett. 110, 152501 (2013).

    Article  ADS  Google Scholar 

  25. R. H. Dicke, Phys. Rev. 93, 99 (1954).

    Article  ADS  MATH  Google Scholar 

  26. Super-Radiance: Multiatomic Coherent Emission, Ed. by M.G. Benedict (Taylor and Francis, New York, 1996).

    Google Scholar 

  27. V. V. Sokolov and V. G. Zelevinsky, Phys. Lett. B 202, 10 (1988).

    Article  ADS  Google Scholar 

  28. V. V. Sokolov and V. G. Zelevinsky, Nucl. Phys. A 504, 562 (1989).

    Article  ADS  Google Scholar 

  29. V. V. Sokolov and V. G. Zelevinsky, Ann. Phys. (N.Y.) 216, 323 (1992).

    Article  ADS  Google Scholar 

  30. T. Ericson, Ann. Phys. (N.Y.) 23, 390 (1963).

    Article  ADS  Google Scholar 

  31. N. Auerbach and V. Zelevinsky, Phys. Rev. C 65, 034601 (2002).

    Article  ADS  Google Scholar 

  32. P. Bartsch et al., Eur. Phys. J. A 4, 209 (1999).

    Article  ADS  Google Scholar 

  33. N. Auerbach, V. Zelevinsky, and A. Volya, Phys. Lett. B 590, 45 (2004).

    Article  ADS  Google Scholar 

  34. V. V. Sokolov and V. G. Zelevinsky, Fizika (Zagreb) 22, 303 (1990).

    Google Scholar 

  35. V. Zelevinsky and A. Volya, in Proceedings of the 11th International Conference on Nuclear Reaction Mechanisms, Ed. by E. Gadioli (Varenna, 2006), p. 73.

  36. P. E. Koehler, F. Bečvař, M. Krtička, et al., Phys. Rev. Lett. 105, 072502 (2010).

    Article  ADS  Google Scholar 

  37. P. E. Koehler, Phys. Rev. C 84, 034312 (2011).

    Article  ADS  Google Scholar 

  38. H. A. Weidenmüller, Phys. Rev. Lett. 105, 232501 (2010).

    Article  ADS  Google Scholar 

  39. A. Volya, Phys. Rev. C 83, 044312 (2011).

    Article  ADS  Google Scholar 

  40. J. L. Celardo, N. Auerbach, F. M. Izrailev, and V. Zelevinsky, Phys. Rev. Lett. 106, 042501 (2011).

    Article  ADS  Google Scholar 

  41. G. Shchedrin and V. Zelevinsky, Phys. Rev. C 86, 044602 (2012).

    Article  ADS  Google Scholar 

  42. G. L. Celardo, F. M. Izrailev, V. G. Zelevinsky, and G. P. Berman, Phys. Rev. E 76, 031119 (2007); Phys. Lett. B 659, 170 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  43. A. Volya and V. Zelevinsky, AIP Conf. Proc. 777, 229 (2005).

    Article  ADS  Google Scholar 

  44. G. L. Celardo and L. Kaplan, Phys. Rev. B 79, 155108 (2009).

    Article  ADS  Google Scholar 

  45. G. L. Celardo, A. M. Smith, S. Sorathia, V. G. Zelevinsky, et al., Phys. Rev. B 82, 165437 (2010).

    Article  ADS  Google Scholar 

  46. P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).

    Article  ADS  Google Scholar 

  47. C.W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).

    Article  ADS  Google Scholar 

  48. S. Sorathia, F. M. Izrailev, G. L. Celardo, V. G. Zelevinsky, and G. P. Berman, Europhys. Lett. 88, 27003 (2009).

    Article  ADS  Google Scholar 

  49. A. Ziletti, F. Borgonovi, G. L. Celardo, F. M. Izrailev, L. Kaplan, and V. G. Zelevinsky, Phys. Rev. B 85, 052201 (2012).

    Article  ADS  Google Scholar 

  50. Y. Greenberg, C. Merrigan, A. Tayebi, and V. Zelevinsky, Eur. Phys. J. B 86, 368 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Zelevinsky.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volya, A., Zelevinsky, V. Continuum shell model and nuclear physics at the edge of stability. Phys. Atom. Nuclei 77, 969–982 (2014). https://doi.org/10.1134/S1063778814070163

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778814070163

Keywords

Navigation