Skip to main content
Log in

Measurements of fission yield in 8 MeV bremsstrahlung induced fission of 232Th and 238U

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The cumulative yields (i.e. the sum of isobaric independent yield up to the isobar of interest) for various fission products have been determined in the 8 MeV bremsstrahlung induced fission of 232Th and 238U by using off-line gamma ray spectrometric technique. From the cumulative yields of the fission products, their mass-chain yields (i.e. the sum of independent yields of all the isobars) were obtained by using charge distribution correction. The mass-chain yields in the 232Th(γ, f) and 238U(γ, f) reactions were compared with the data of similar excitation energy in the 232Th(n, f) and 238U(n, f) reactions to examine the effect of nuclear structure. From these data, it was found that the yields of fission products for the mass numbers 133–134, 138–140 and 143–144 as well as their corresponding complementary products are significantly higher than other fission products. Higher yields of the fission products around the mass numbers 133–134 and 143–144 were explained from the standard I and standard II asymmetric mode of fission, which indicates the role of shell closure proximity. However, the amplitude of yields for the mass numbers 133–134 and 143–144 are reverse in the 232Th(γ, f) and 232Th(n, f) reactions than in the 238U(γ, f) and 238U(n, f) reactions, which has been explained from the point of shell combinations of the complementary fragments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vandenbosch R, Huizenga JR (1973) Nuclear fission. Academic, New York

    Google Scholar 

  2. Wagemans C (1990) The nuclear fission process. CRC, London

    Google Scholar 

  3. Carminati F, Klapisch R, Revol JP, Rubia JA, Rubia C (1993) CERN/AT/93-49 (ET)

  4. Rubia C, Rubio JA, Buono S, Carminati F, Fietier N, Galvez J, Geles C, Kadi Y, Klapisch R, Mandrilion P, Revol JP, Roche Ch (1995) CERN/AT/95-44 (ET), (1995) CERN/AT/95-53(ET), (1996) CERN/LHC/96-01 (LET), (1997) CERN/LHC/97-01 (EET)

  5. Bowman CD (1994) AIP Conf. Proc. 346, Proceedings of international conference on accelerator-driven transmutation technologies and applications, Las Vegas

  6. Accelerator driven systems: energy generation and transmutation of nuclearwaste, status report (Nov 1997) IAEA, Vienna, IAEA-TECDO-985

  7. Sinha RK, Kakodkar A (2006) Nucl Eng Des 236:683

    Article  CAS  Google Scholar 

  8. Ganesan S (2006) Creation of Indian experimental benchmarks for thorium fuel cycle, IAEA coordinated research project on “Evaluated data for thorium–uranium fuel cycle”. In: Third research co-ordination meeting, 30 Jan to 2 Feb 2006, Vienna, INDC (NDS)-0494

  9. Fast reactors and accelerator driven systems knowledge base, IAEA-TECDOC-1319: thorium fuel utilization: options and Trends

  10. Mathieu L et al (2005) “Proportion for a very simple Thorium Molten Salt reactor,” In: Proceeding of global international conference, Paper No. 428, Tsukuba

  11. Nuttin A, Heuer D, Biliebaud A, Brissot R, Le Brun C, Liatard E, Loiseaux JM, Mathieu L, Meplan O, Merle-Lucotte E, Nifenecker H, Perdu F, David S (2005) Potential of thorium molten salt reactors: detailed calculations and concept evolution with a view to large scale energy production. Proc Nucl Energy 46:77

    Article  CAS  Google Scholar 

  12. Allen TR, Crawford DC (2007) “Lead-Cooled Fast Reactor Systems and the Fuels and Materials Challenges,” science and technology of nuclear installations, Article ID 97486

  13. Annual Project Status Report 2000, MIT-ANP-PR-071, INEFL/EXT-2009-00994

  14. Rider BF (181) Compilation of fission products yields, NEDO, 12154 3c ENDF-327, Valecicecitos Nuclear Centre

  15. England JR, Rider BF (1992) Evaluation and compilation of fission products yields, ENDF/B-VI:1989

  16. James M, Mills R, Neutron fission products yields (1993) UKFY2, (1991) JEF-2.2

  17. Wahl AC (1988) Atomic Data Nucl. Data Tables 39:1

    Article  CAS  Google Scholar 

  18. Turkevich A, Nidday JB (1951) Phys Rev 84:52

    Article  CAS  Google Scholar 

  19. Iyer RH, Mathews CK, Ravindran N, Rengan K, Singh DV, Ramaniah MV, Sharma HD (1963) J Inorg Nucl Chem 25:465

    Article  CAS  Google Scholar 

  20. Erten HN, Grutter A, Rossler E, von Gunten HR (1981) Nucl Sci Eng 79:167

    CAS  Google Scholar 

  21. Naik H, Nair AGC, Kalsi PC, Pande AK, Singh RJ, Ramaswami A, Iyer RH (1996) Radiochim Acta 75:69

    CAS  Google Scholar 

  22. Iyer RH, Naik H, Pandey AK, Kalsi PC, Singh RJ, Ramaswami A, Nair AGC (2000) Nucl Sci Eng 135:227

    CAS  Google Scholar 

  23. Broom KM (1964) Phys Rev 133:B874

    Article  Google Scholar 

  24. Ford GP, Leachman RB (1965) Phys Rev B137:826

    Article  Google Scholar 

  25. Ganapathy R, Kuroda PK (1996) J Inorg Nucl Chem 28:2017

    Google Scholar 

  26. Tin Mo, Rao MN (1968) J Inorg Nucl Chem 30:345

    Article  Google Scholar 

  27. Thein M, Rao MN, Kuroda PK (1968) J Inorg Nucl Chem 30:1145

    Article  CAS  Google Scholar 

  28. Gevaert LH, Jervis RE, Sharma HD (1970) Can J Chem 48:641

    Article  CAS  Google Scholar 

  29. Holubarsch W, Pfeiffer L, Gonnenwein F (1971) Nucl Phys A 171:631

    Article  CAS  Google Scholar 

  30. Swindle DL, Moore DT, Beck JN, Kuroda PK (1971) J Inorg Nucl Chem 33:3643

    Article  CAS  Google Scholar 

  31. Dubrovina SM, Novgorodlseva VI, Morozov LN, Pchelin VA, Chistjakov LV, Shigin VA, Shubko VM (1973) Report-Yaderno-Fizicheskie Insledovoniya, Report No 16:19

  32. Trochon J, Yehia HA, Brisard F, Pranal Y (1979) Nucl Phys A 318:63

    Article  Google Scholar 

  33. Glendenin LE, Gindler JE, Ahmad I, Henderson DJ, Meadows JW (1980) Phys Rev C 22:152

    Article  CAS  Google Scholar 

  34. Lam ST, Yu LL, Fielding HW, Dawson WK, Neilson GC (1983) Phys Rev C 28:1212

    Article  CAS  Google Scholar 

  35. Simutkin VD, Ryzhov IV, Tutin GA, Vaishnene LA, Blongren J, Pomp S, Oesterlung M, Andersson P, Bevilacqua R, Menlders JP, Prieels R (2010) Conf Proceeding by American Inst Phys USA No. 1175:393

  36. Ryzhov IV, Yavshits SG, Tutin GA, Kovalev NV, Saulski AV, Kudryashev NA, Saulski AV, Kudryashev NA, Onegin MS, Vaishnene LA, Gavrikov Yu A, Grudzevich OT, Simutkin VD, Pomp S, Blomgren J, Osterlund M, Andersson P, Bevilacqua R, Meulders J, Prieels R (2011) Phys Rev C 85:054603

    Article  Google Scholar 

  37. Borisova NL, Dubrovina SM, Novgorodtseva VI, Pchelin VA, Shigin VA, Shubko VM (1968) Sov J Nucl Phys 6:331

    Google Scholar 

  38. Petrzhak VA, Teplykh VF, Panyan MG (1970) Sov J Nucl Phys 11:654

    Google Scholar 

  39. Nethaway DR, Mendoza B (1972) Phys Rev C 6:1827

    Article  CAS  Google Scholar 

  40. Harvey JT, Adams DE, James WD, Beck JN, Meaon JL, Kuroda PK (1975) J Inorg Nucl Chem 37:2243

    Article  CAS  Google Scholar 

  41. Adams DE, James WD, Beck JN, Kuroda PK (1975) J Inorg Nucl Chem 37:419

    Article  CAS  Google Scholar 

  42. Rajagopalan M, Pruys HS, Grutter A, Hermes EA, von Gunten HR (1976) J Inorg Nucl Chem 38:351

    Article  CAS  Google Scholar 

  43. James WD, Adams DE, Beck JN, Kuroda PK (1975) J Inorg Nucl Chem 37:1341

    Article  CAS  Google Scholar 

  44. Chapman TC, Anzelon GA, Spitale GC, Nethaway DR (1978) Phys Rev C 17:1089

    Article  CAS  Google Scholar 

  45. Nagy S, Flynn KF, Gindler JE, Meadows JW, Glendenin LE (1978) Phys Rev C 17:163

    Article  CAS  Google Scholar 

  46. Afarideh A, Annole KR (1989) Ann Nucl Energy 16:313

    Article  CAS  Google Scholar 

  47. Lhersonnau G, Denloov P, Canchel G, Huikari J, Jardin J, Tokinen A, KOlhinen V, Lau C, Lebroton L, Mueller AC, Nieminen A, Nummela S, Penttila H, Perajavi K, Radivojevic Z, Rubchenya V, Saint-Laurent MG, Trzaska WH, Vakhtin D, Vervier J, Villari AC, Viang JC, Aystoe J (2000) Eur Phys J A (Hadron and Nuclei) 9:385

    Article  Google Scholar 

  48. Hiller DM, Martin DS Jr (1953) Phys Rev 90:581

    Article  CAS  Google Scholar 

  49. Gevaert LH, Jervis RE, Subbarao SC, Sharma HD (1970) Can J Chem 48:652

    Article  CAS  Google Scholar 

  50. Schrøder B, Nydahl G, Forkman B (1970) Nucl Phys A 143:449

    Article  Google Scholar 

  51. Chattopadhyay A, Dost KA, Krajbich I, Sharma HD (1973) J Inorg Nucl Chem 35:2621

    Article  CAS  Google Scholar 

  52. Hogan JC, Richardson AE, Meason JL, Wright HL (1977) Phys Rev C 16:2296

    Article  CAS  Google Scholar 

  53. Gunther W, Huber K, Kneissl U, Krieger H, Maier HJ (1980) Z Phys A 295:333

    Article  Google Scholar 

  54. Piessens M, Jacobs E, Pomm′e S, De Frenne D (1993) Nucl Phys A 556:88

    Article  Google Scholar 

  55. Persyn K, Jacobs E, Pomme S, De Frenne D, Govaert K, Yoneama M-L (1997) Nucl Phys A 620:171

    Article  Google Scholar 

  56. Naik H, Nathaniel TN, Goswami A, Kim GN, Lee MW, Suryanarayana SV, Ganesan S, Kim EA, Cho M-H, Ramakumar KL (2012) Phys Rev C 85:024623

    Article  Google Scholar 

  57. Naik H, Goswami A, Kim GN, Lee MW, Kim KS, Suryanarayana SV, Kim EA, Shin SG, Cho M-H (2012) Phys Rev C 86:054607

    Article  Google Scholar 

  58. Naik H, Nimje VT, Raj D, Suryanarayana SV, Goswami A, Singh S, Acharya SN, Mttal KC, Ganesan S, Chandrachoodan P, Manchanda VK, Venugopal V, Banarjee S (2011) Nucl Phys A 853:1

    Article  Google Scholar 

  59. Schmitt RA, Sugarman N (1954) Phys Rev 95:1260

    Article  CAS  Google Scholar 

  60. Richter HG, Coryell CD (1954) Phys Rev 95:1550

    Article  CAS  Google Scholar 

  61. Katz L, Kavanagh TM, Cameron AGW, Bailey EC, Spinks JWT (1958) Phys Rev 99:98

    Article  Google Scholar 

  62. Meason JL, Kuroda PK (1966) Phys Rev 142:691

    Article  CAS  Google Scholar 

  63. Willams IR, Fulmer CB, Dell GF, Engebretson MJ (1968) Phys Lett B 26:140

    Article  Google Scholar 

  64. Swindle D, Wright R, Takahashi K, Rivera WH, Meason JL (1973) Nucl Sci Eng 52:466

    CAS  Google Scholar 

  65. James WD, Adams DE, Sigg RA, Harvey JT, Meason JL, Beck JN, Kuroda PK, Wright HL, Hogan JC (1978) J Inorg Nucl Chem 38:1109

    Article  Google Scholar 

  66. Thierens H, De Frenne D, Jacobs E, De Clercq A, D’hondt P, Deruytter AJ (1976) Phys Rev C 14:1058

    Article  CAS  Google Scholar 

  67. Jacobs E, Thierens H, De Frenne D, De Clercq A, D’hondt P, De Gelder P, Deruytter AJ (1979) Phys Rev C 19:422

    Article  CAS  Google Scholar 

  68. De Clercq A, Jacobs E, De Frenne D, Thierens H, D’hondt P, Deruytter AJ (1976) Phys Rev C 13:1536

    Article  Google Scholar 

  69. Jacobs E, De Clercq A, Thierens H, De Frenne D, D’hondt P, De Gelder P, Deruytter AJ (1979) Phys. Rev C 20:2249

    CAS  Google Scholar 

  70. Pomme S, Jacobs E, Persyn K, De Frenne D, Govaert K, Yoneama ML (1993) Nucl Phys A 560:689

    Article  CAS  Google Scholar 

  71. Pomm’e S, Jacobs E, Piessens M, De Frenne D, Persyn K, Govaert K, Yoneama M-L (1994) Nucl Phys A 572:237

    Article  Google Scholar 

  72. Yamadera A, Kase T, Nakamura T (1988) In: Proceedings of the international conference on nuclear data for science and technology, Moto (Japan Atomic Energy Research Institute, Tokai, 1988) p 1147

  73. Gook A, Chernykh M, Eekardt C, Enders J, von Neumann-Cosel P, Oberstedt A, Oberestedt S, Richter A (2011) Nucl Phys A 851:1

    Article  Google Scholar 

  74. Brossa U, Grossmann S, Muller A (1990) Phys Rep 197:167

    Article  Google Scholar 

  75. Wilkins BD, Steinberg EP, Chasman RR (1976) Phys Rev C 14:1832

    Article  CAS  Google Scholar 

  76. Eshwarappaa KM, Ganesh S, Yogesh K, Sinha A, Sarkar PS, Godwal BK (2005) Nucl Inst Methods Phys Res A 540:412

    Article  Google Scholar 

  77. Bjornholm S, Lynn JE JE (1980) Rev Mod Phys 52:725

    Article  Google Scholar 

  78. Browne E, Firestone RB, Shirley VS (ed) (1986) Table of radioactive isotopes; In: Firestone RB, Ekstrom LP: WWW Table of radioactive isotopes Ver 2.1, available at http://ie.lbl.gov.toi/

  79. Blachot J, Fiche Ch (1981) Table of radioactive isotopes and their main decay characteristics. Ann Phys (Paris) 6:3–218

    CAS  Google Scholar 

  80. Naik H, Singh RJ, Iyer RH (2003) Eur Phys J A 16:495

    Article  CAS  Google Scholar 

  81. Sugarman N, Turkevich A, Coryell CD, Sugarman N (eds.) (1951) In: Radiochemical studies: the fission product, McGraw-Hill, New York, p 1396

  82. Erten HN, Aras NK (1979) J Inorg Nucl Chem 41:149

    Article  CAS  Google Scholar 

  83. Coryell CD, Kaplon M, Fink RD (1961) Can J Chem 39:646

    Article  CAS  Google Scholar 

  84. Agarwal C, Goswami A, Kalsi PC, Singh S, Mhatre A, Ramaswami A (2008) J Radioanal Nucl Chem 275:445

    Article  CAS  Google Scholar 

  85. Metz LA, Frise JJ, Finn EC, Greenwood LR, Kephart RF, Hines CC, King MD, Henry KM, Wall DE (2013) J Radioanal Nucl Chem 296:763

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their sincere thanks to the staff of Microtron facility at Mangalgangotri University, Mangalore, India for providing the electron beam to carry out the experiment. One of the authors (H. Naik) thanks to Dr. V.K. Manchanda, earlier head of Radiochemistry Division for supporting the program and permitting him to visit the Microtron facility to carry out the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Naik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naik, H., Shivashankar, B.S., Raj Prakash, H.G. et al. Measurements of fission yield in 8 MeV bremsstrahlung induced fission of 232Th and 238U. J Radioanal Nucl Chem 299, 127–137 (2014). https://doi.org/10.1007/s10967-013-2719-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2719-0

Keywords

Navigation