Skip to main content
Log in

Folding model analysis of pion elastic and inelastic scattering from 6Li and 12C

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

π ±-Nucleus scattering cross sections are calculated applying the Watanabe superposition model with a phenomenological Woods-Saxon potential. The phenomenological potential parameters are searched for π ± scattering from 6Li and 12C to reproduce not only differential elastic cross sections but also inelastic and total and reaction cross sections at pion kinetic energies from 50 to 672 MeV. The optical potentials of 6Li and 12C are calculated in terms of the alpha particle and deuteron optical potentials. Inelastic scattering has been analyzed using the distorted waves from elastic-scattering data. The values of deformation lengths thus obtained compare very well with the ones reported earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Li Qing-Run, Nucl. Phys. A 415, 445 (1984).

    Article  ADS  Google Scholar 

  2. L. E. Antonuk et al., Nucl. Phys. A 451, 741 (1986).

    Article  ADS  Google Scholar 

  3. R. R. Kiziah et al., Phys. Rev. C 30, 1643 (1984).

    Article  ADS  Google Scholar 

  4. P. D. Kunz, CHUCK3, a Coupled Channel Born Approximation Code (University of Colorado).

  5. G. R. Satchler, Nucl. Phys. A 540, 533 (1992).

    Article  ADS  Google Scholar 

  6. Md. A. E. Akhter, Sadia Afroze Sultanaa, H. M. Sen Gupta, and R. J. Peterson, J. Phys. G 27, 755 (2001).

    Article  ADS  Google Scholar 

  7. A. A. Ebrahim, Eur. Phys. J. A 47(6), 74 (2011).

    Article  ADS  Google Scholar 

  8. S. Watanabe, Nucl. Phys. A 8, 484 (1958).

    Article  Google Scholar 

  9. S. A. E. Khallaf and A. A. Ebrahim, Phys. Rev. C 62, 024603 (2000).

    Article  ADS  Google Scholar 

  10. K. W. Kemper, A. F. Zeller, T. R. Ophel, et al., Nucl. Phys. A 320, 413 (1979).

    Article  ADS  Google Scholar 

  11. K. G. Boyer et al., Phys. Rev. C 29, 182 (1984).

    Article  ADS  Google Scholar 

  12. M.W. Kermode, Proc. Phys. Soc. 84, 554 (1964).

    Article  ADS  Google Scholar 

  13. J.W. Watson, Nucl. Phys. A 198, 129 (1972).

    Article  ADS  Google Scholar 

  14. S. A. E. Khallaf, Fizika (Zagreb) 16, 285 (1984).

    Google Scholar 

  15. G. R. Satchler, Direct Nuclear Reactions (Oxford Univ. Press, New York, 1983).

    Google Scholar 

  16. S. A. E. Khallaf and A. A. Ebrahim, Phys. Rev. C 65, 064605 (2002).

    Article  ADS  Google Scholar 

  17. A. Nadasen, M. McMaster, M. Fingal, et al., Phys. Rev. C 40, 1237 (1989).

    Article  ADS  Google Scholar 

  18. R. J. Sobie et al., Phys. Rev. C 30, 1612 (1984).

    Article  ADS  Google Scholar 

  19. L. E. Antonuk et al., Nucl. Phys. A 420, 435 (1984).

    Article  ADS  Google Scholar 

  20. G. Kahrimanis et al., Phys. Rev. C 55, 2533 (1997).

    Article  ADS  Google Scholar 

  21. F. Binon, P. Duteil, J. P. Garron, et al., Nucl. Phys. B 17, 168 (1970).

    Article  ADS  Google Scholar 

  22. M. B. Johnson and G. R. Satchler, Ann. Phys. (N.Y.) 248, 134 (1996).

    Article  ADS  Google Scholar 

  23. B. Körfgen, F. Osterfeld, and T. Udagawa, Phys. Rev. C 50, 1637 (1994).

    Article  ADS  Google Scholar 

  24. M. M. Sternheim and E. H. Auerbach, Phys. Rev. Lett. 25, 1500 (1970).

    Article  ADS  Google Scholar 

  25. A. A. Ebrahim and S. A. E. Khallaf, J. Phys. G 30, 83 (2004).

    Article  ADS  Google Scholar 

  26. J. Vernotte, G. Berrier-Ronsin, J. Kalifa, and R. Tamisier, Nucl. Phys. A 390, 285 (1982).

    Article  ADS  Google Scholar 

  27. G. R. Satchler and W. G. Love, Phys. Rep. 55, 183 (1979).

    Article  ADS  Google Scholar 

  28. I. Brissaud, L. Bimbot, Y. Le Bornec, et al., Phys. Rev. C 11, 1537 (1975).

    Article  ADS  Google Scholar 

  29. Bikash Sinha, Phys. Rev. C 11, 1546 (1975).

    Article  ADS  Google Scholar 

  30. B. C. Parija, Phys. Rev. C 28, 453 (1983).

    Article  ADS  Google Scholar 

  31. A. Saunders et al., Phys. Rev. C 53, 1745 (1996).

    Article  ADS  Google Scholar 

  32. C. J. Gelderloos, J. T. Brack, M. D. Holcomb, et al., Phys. Rev. C 62, 024612 (2000).

    Article  ADS  Google Scholar 

  33. K. Stricker, H. McManus, and J. A. Carr, Phys. Rev. C 19, 929 (1979).

    Article  ADS  Google Scholar 

  34. A. S. Carroll, I. H. Chiang, C. B. Dover, et al., Phys. Rev. C 14, 635 (1976).

    Article  ADS  Google Scholar 

  35. A. S. Clough et al., Nucl. Phys. B 76, 15 (1974).

    Article  ADS  Google Scholar 

  36. C. Wilkin et al., Nucl. Phys. B 62, 61 (1973).

    Article  ADS  Google Scholar 

  37. E. Friedman, A. Goldring, R. R. Johnson, et al., Phys. Lett. B 257, 17 (1991).

    Article  ADS  Google Scholar 

  38. O. Meirav, E. Friedman, A. Altman, et al., Phys. Rev. C 36, 1066 (1987).

    Article  ADS  Google Scholar 

  39. D. Ashery, I. Navon, G. Azuelos, et al., Phys. Rev. C 23, 2173 (1981).

    Article  ADS  Google Scholar 

  40. C. B. Dover and G. E. Walker, Phys. Rep. 89, 1 (1982).

    Article  ADS  Google Scholar 

  41. S. M. Smith, G. Tibell, A. A. Cowley, et al., Nucl. Phys. A 207, 273 (1973), and references therein.

    Article  ADS  Google Scholar 

  42. A. S. Dem’yanova, E. F. Svinareva, S. A. Goncharov, et al., Nucl. Phys. A 542, 208 (1992).

    Article  ADS  Google Scholar 

  43. M. E. Brandan and K. W. McVoy, Phys. Rev. C 43, 1140 (1991).

    Article  ADS  Google Scholar 

  44. P. J. Moffa, C. B. Dover, and J. P. Vary, Phys. Rev. C 16, 1857 (1977).

    Article  ADS  Google Scholar 

  45. R. E. Chrien, R. Sawafta, R. J. Peterson, et al., Nucl. Phys. A 625, 251 (1997).

    Article  ADS  Google Scholar 

  46. F. Hinterberger, G. Mairle, U. Schmidt-Rohr, et al., Nucl. Phys. A 115, 570 (1968).

    Article  ADS  Google Scholar 

  47. K. H. Bray, Mahavir jain, K. S. Jayaraman, et al., Nucl. Phys. A 189, 35 (1972).

    Article  ADS  Google Scholar 

  48. W. B. Cottingame et al., Phys. Rev. C 36, 230 (1987).

    Article  ADS  Google Scholar 

  49. O. Hansen, P. D. Bond, S. Kubono, et al., Nucl.Phys. A 398, 325 (1983).

    Article  ADS  Google Scholar 

  50. W. F. Junkin and F. Villars, Ann. Phys. (N.Y.) 45, 93 (1967).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ebrahim.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebrahim, A.A. Folding model analysis of pion elastic and inelastic scattering from 6Li and 12C. Phys. Atom. Nuclei 76, 435–449 (2013). https://doi.org/10.1134/S1063778813030071

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778813030071

Keywords

Navigation