Classical-Nova Contribution to the Milky Way’s Al26 Abundance: Exit Channel of the Key Al25(p,γ)Si26 Resonance

M. B. Bennett, C. Wrede, K. A. Chipps, J. José, S. N. Liddick, M. Santia, A. Bowe, A. A. Chen, N. Cooper, D. Irvine, E. McNeice, F. Montes, F. Naqvi, R. Ortez, S. D. Pain, J. Pereira, C. Prokop, J. Quaglia, S. J. Quinn, S. B. Schwartz, S. Shanab, A. Simon, A. Spyrou, and E. Thiagalingam
Phys. Rev. Lett. 111, 232503 – Published 4 December 2013

Abstract

Classical novae are expected to contribute to the 1809-keV Galactic γ-ray emission by producing its precursor Al26, but the yield depends on the thermonuclear rate of the unmeasured Al25(p,γ)Si26 reaction. Using the β decay of P26 to populate the key Jπ=3+ resonance in this reaction, we report the first evidence for the observation of its exit channel via a 1741.6±0.6(stat)±0.3(syst)keV primary γ ray, where the uncertainties are statistical and systematic, respectively. By combining the measured γ-ray energy and intensity with other experimental data on Si26, we find the center-of-mass energy and strength of the resonance to be Er=414.9±0.6(stat)±0.3(syst)±0.6(lit.)keV and ωγ=23±6(stat)10+11(lit.)meV, respectively, where the last uncertainties are from adopted literature data. We use hydrodynamic nova simulations to model Al26 production showing that these measurements effectively eliminate the dominant experimental nuclear-physics uncertainty and we estimate that novae may contribute up to 30% of the Galactic Al26.

  • Figure
  • Received 20 August 2013

DOI:https://doi.org/10.1103/PhysRevLett.111.232503

© 2013 American Physical Society

Authors & Affiliations

M. B. Bennett1,2,*, C. Wrede1,2,3,†, K. A. Chipps4, J. José5, S. N. Liddick6,2, M. Santia1,2, A. Bowe1,2,7, A. A. Chen8, N. Cooper9, D. Irvine8, E. McNeice8, F. Montes2,10, F. Naqvi9, R. Ortez1,2,3, S. D. Pain11, J. Pereira2,10, C. Prokop6,2, J. Quaglia12,10,2, S. J. Quinn1,2,10, S. B. Schwartz1,2,13, S. Shanab1,2, A. Simon2,10, A. Spyrou1,2,10, and E. Thiagalingam8

  • 1Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
  • 2National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
  • 3Department of Physics, University of Washington, Seattle, Washington 98195, USA
  • 4Department of Physics, Colorado School of Mines, Golden, Colorado 08401, USA
  • 5Departament Física i Enginyeria Nuclear (UPC) and Institut d’Estudis Espacials de Catalunya (IEEC), E-08034 Barcelona, Spain
  • 6Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
  • 7Physics Department, Kalamazoo College, Kalamazoo, Michigan 49006, USA
  • 8Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
  • 9Department of Physics and Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06520, USA
  • 10Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, Michigan 48824, USA
  • 11Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
  • 12Department of Electrical Engineering, Michigan State University, East Lansing, Michigan 48824, USA
  • 13Geology and Physics Department, University of Southern Indiana, Evansville, Indiana 47712, USA

  • *bennettm@nscl.msu.edu
  • wrede@nscl.msu.edu

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 111, Iss. 23 — 6 December 2013

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×