Skip to main content
Log in

Measurement of the neutron capture cross-section of 238U using the neutron activation technique

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The 238U(n, γ)239U reaction cross-section at average neutron energy of 3.7 ± 0.3 MeV from the 7Li(p, n)7Be reaction has been determined using activation and off-line γ-ray spectrometric technique. The 238U(n, γ)239U and 238U(n, 2n)237U reaction cross-sections at average neutron energy of 9.85 ± 0.38 MeV from the same 7Li(p, n)7Be reaction have been also determined using the above technique. The experimentally determined 238U(n, γ)239U and 238U(n, 2n)237U reaction cross-sections were compared with the evaluated data of ENDF/B-VII, JENDL-4.0, JEFF-3.1 and CENDL-3.1. The experimental values were found to be in general agreement with the evaluated value based on ENDF/B-VII, and JENDL-4.0 but not with the JEFF-3.1 and CENDL-3.1. The present data along with literature data in a wide range of neutron energies were interpreted in terms of competition between different reaction channels including fission. The 238U(n, γ)239U and 238U(n, 2n)237U reaction cross-sections were also calculated theoretically using the TALYS 1.2 computer code and were also found to be in agreement experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fast Reactors and Accelerator Driven Systems Knowledge Base, IAEA-TECDOC-1319: Thorium fuel utilization: Options and Trends

  2. MacDonald PE, Todreas N (2000) Annual Project Status Report 2000, MIT-ANP-PR-071, INEFL/EXT-2009-00994

  3. Mathieu L et al (2005) Proportion for a very simple thorium molten salt reactor. In: Proceedings of Global International Conference, Paper No 428, Tsukuba

  4. Nuttin A, Heuer D, Billebaud A, Brissot R, Le Brun C, Liatard E, Loiseaux JM, Mathieu L, Meplan O, Merle-Lucotte E, Nifenecker H, Perdu F, David S (2005) Proc Nucl Energy 46:77

    Article  CAS  Google Scholar 

  5. Allen TR, Crawford DC (2007) Science and Technology of Nuclear Installations, Article ID 97486

  6. Sinha RK, Kakodkar A (2006) Design and development of AHWR: the Indian thorium fueled innovative reactor. Nucl Eng Des 236(7–8):683

    Article  CAS  Google Scholar 

  7. Ganesan S (2006) Creation of Indian experimental benchmarks for thorium fuel cycle, IAEA Coordinated research project on “Evaluated data for thorium–uranium fuel cycle,” Third research co-ordination meeting, 30 Jan–2 Feb 2006, Vienna, INDC (NDS)-0494

  8. Ganesan S (2006) Third research co-ordination meeting, Vienna, Austria, INDC (NDS)-0494

  9. Pronyaev VG (1999) Summary Report of the Consultants’ Meeting on Assessment of Nuclear Data Needs for Thorium and Other Advanced Cycles. INDC (NDS)-408, International Atomic Energy Agency

  10. Kuz’minov BD, Manokhin VN (1997) Status of nuclear data for thorium fuel cycle. Nucl Constants 3–4:41

    Google Scholar 

  11. Cheng ET, Mathews DR (1979) The influence of nuclear data uncertainties on thorium fusion–fission hybrid blanket nucleonic performance. In: Proceedings of international conference of nuclear cross sections for technology, Knoxville, Tennessee, October 22–26, 1979, p 834, NBS-SP 594, National Bureau of Standards

  12. Bartine DE (1979) The use of thorium in fast breeder reactors. In: Proceedings of international conference of nuclear cross sections for technology, Knoxville, Tennessee, October 22–26, 1979, p 119, NBS-SP 594, National Bureau of Standards

  13. Pelloni S, Youinou G, Wydler P (1997) Impact of different nuclear data on the performance of fast spectrum based on the thorium–uranium fuel cycle. In: Proceedings of international conference of nuclear data for science and technology, Trieste, May 19–24, 1997, part II, p 1172

  14. Batchelor R, Gilboy WB, Jowle JH (1965) Nucl Phys 65:236

    Article  CAS  Google Scholar 

  15. Asghar M, Chaffey CM, Moxon MC (1966) Nucl Phys 85:305

    Article  CAS  Google Scholar 

  16. Menlok HO, Poenitz WP (1968) Nucl Sci Eng 33:24

    Google Scholar 

  17. Drake D, Bergqvist I, McDaniels DK (1971) Phys Lett B 36:557–559

    Article  CAS  Google Scholar 

  18. Saussure GD, Silver EG, Perez RB, Ingle R, Weaver H (1973) Nucl Sci Eng 51:385

    Google Scholar 

  19. Poenitz WP (1975) Nucl Sci Eng 57:300

    CAS  Google Scholar 

  20. Liou HL, Chrien RE (1977) Nucl Sci Eng 62:463

    CAS  Google Scholar 

  21. Wisshak K, Kappeler F (1978) Nucl Sci Eng 66:363

    CAS  Google Scholar 

  22. Perez RB, de Saussure G, Macklin RL, Halperin J (1979) Phys Rev C 20:528

    Article  CAS  Google Scholar 

  23. Mc Daniels DK, Varghese P, Drake DM, Arthur F, Lindholm A, Berquist I, Krumlinde J (1982) Nucl Phys A 384:88

    Article  Google Scholar 

  24. Voignier J, Joly S, Grenier G (1992) Nucl Sci Eng 112:87

    CAS  Google Scholar 

  25. Leipunskiy AI, Kazachkovskiy OD, Artyukhov GJa, Baryshnikov AI, Belanova TS, Galkov VI, Stavisskiy YuJa, Stumbur EA, Sherman LE (1958) 58GENEVA 15:50

  26. Hann RC, Rose B (1959) J Nucl Eng 8:197

    Google Scholar 

  27. Panitkin YuG, Tolstikov VA (1972) Atomnaya Energia 33:782

    Article  CAS  Google Scholar 

  28. Panitkin YuG, Tolstikov VA (1972) Atomnaya Energia 33:825

    CAS  Google Scholar 

  29. Panitkin YuG, Tolstikov VA (1975) Atomnaya Energia 39:17

    CAS  Google Scholar 

  30. Lindner M, Nagle RJ, Landrum JH (1976) Nucl Sci Eng 59:381

    CAS  Google Scholar 

  31. Poenitz WP, Fawcell LR Jr, Smith DL (1981) Nucl Sci Eng 78:329

    Google Scholar 

  32. Buleeva NN, Davletshin AN, Tipunkov OA, Tikhonov SV, Tolstokov VA (1988) Atomnaya Energia 65:348

    CAS  Google Scholar 

  33. Quang E, Knoll GF (1991) Nucl Sci Eng 110:282

    Google Scholar 

  34. Landrum JH, Nagle RJ, Lindner M (1973) Phys Rev C 8:1938

    Article  CAS  Google Scholar 

  35. Kaius H, Ackermann A, Scobel W (1979) J Phys G 5:715

    Article  Google Scholar 

  36. Frchaut J, Bertin A, Bois R (1980) Nucl Sci Eng 74:29

    Google Scholar 

  37. Kornilov NV, Zhuravlev BV, Sal’nikov OA, Raich P, Nad’ Sh, Darotsi Sh, Sailer K, Chikai I (1980) Atomnaya Energia 49:283

    CAS  Google Scholar 

  38. Shani G (1983) Ann Nucl Energy 10:473

    Article  CAS  Google Scholar 

  39. Wang X, Jiang S, He M, Dong K, Xiao C (2010) Nucl Instrum Methods Phys Res A 621:326

    Article  CAS  Google Scholar 

  40. Naik H, Prajapati PM, Surayanarayana SV, Jagadeesan KC, Thakare SV, Raj D, Mulik VK, Sivashankar BS, Nayak BK, Sharma SC, Mukherjee S, Singh S, Goswami A, Ganesan S, Manchanda VK (2011) Eur Phys J A 47:51

    Article  Google Scholar 

  41. Browne E, Firestone RB (1986) Table of Radioactive Isotopes, Shirley VS (ed), Wiley, New York

  42. Browne E (2001) Nuclear Data Sheets 93:763

    Article  CAS  Google Scholar 

  43. Firestone RB, Ekstrom LP (2004) Table of radioactive isotopes, (2004)

  44. Blachot J, Fiche Ch (1981) Table of Radioactive Isotopes and their main decay characteristics. Ann Phys 6(1981):3–218

    CAS  Google Scholar 

  45. Blachot J (2005) Nucl Data Sheets 104:967–1110

    Article  CAS  Google Scholar 

  46. Singh B, Tuli JK (2005) Nucl Data Sheets 105:109–222

    Article  CAS  Google Scholar 

  47. Liskien H, Paulsen A (1975) Neutron production cross sections and energies for the reactions 7Li(p, n)7Be and 7Li(p, n)7Be*. At Data Nucl Data Tables 15:57

    Article  CAS  Google Scholar 

  48. Poppe CH, Anderson JD, Davis JC, Grimes SM, Wong C (1976) Phys Rev C 14:438

    Article  CAS  Google Scholar 

  49. Meadows JW, Smith DL (1972) Neutrons from proton bombardment of natural lithium, Argonne National Laboratory Report ANL-7983

  50. Mukhopadhyaya PK (2001) Personal Communication

  51. The international Reactor Dosimetry File:IRDF (2002) Nuclear Data Section, International Atomic Energy Agency

  52. Nagy S, Flynn KF, Gindler JE, Meadows JW, Glendenin LE (1978) Phys Rev C 17:163

    Article  CAS  Google Scholar 

  53. Chapman TC, Anzelon GA, Spitale GC, Nethaway DR (1978) Phys Rev C 17:1089

    Article  CAS  Google Scholar 

  54. Blons J, Mazur C, Paya D (1975) Phys Rev Lett 35:1749

    Article  CAS  Google Scholar 

  55. Chadwick MB et al (2006) ENDF/B-VII.0: next generation evaluated nuclear data library for nuclear science and technology. Nucl Data Sheets 107:2931–3060

    Article  CAS  Google Scholar 

  56. Shibata K et al (2011) JENDL-4.0: a new library for nuclear science and engineering. Nucl Sci Tech 48(1):1

    Article  CAS  Google Scholar 

  57. Koning AJ, et al (2007) The JEFF evaluated data project. In: Proceeding of the International Conference on Nuclear Data for Science and Technology, Nice

  58. China Evaluated Nuclear Data Library CENDL-3.1, (2009)

  59. IAEA-EXFOR Database, at http://www-nds.iaea.org/exfor

  60. Tan V, Canh Hai N, Trong Hiep N, (1996) INDC (VN)-8

  61. Ding D-Z, Guo T-C (1978) HSJ-77106, Review of U-238 capture cross-sections-En = 1 keV to 20 MeV

  62. Koning AJ, Hilaire S, Duijvestijn MC (2005) In: Haight RC, Chadwick MB, Kawano T, Talou P (ed) Proceeding of the International Conference on Nuclear Data for Science and Technology-ND 2004, AIP, vol 769. Santa Fe, p 1154

Download references

Acknowledgments

The authors are thankful to the staff of TIFR-BARC Pelletron facility for their kind co-operation and help to provide the proton beam to carry out the experiment. We are also thankful to Mr. Ajit Mahadkar and Mrs. Dipa Thapa from target laboratory of Pelletron facility at TIFR, Mumbai for providing us the Li and Ta targets. The authors Mr. V. K. Mulik and S. Dhole gratefully acknowledge DAE-BRNS, Mumbai for the financial support given to the Pune University through a BARC-Uni-Pune research project. (No. 2008/36/27-BRNS/1844).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Naik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naik, H., Surayanarayana, S.V., Mulik, V.K. et al. Measurement of the neutron capture cross-section of 238U using the neutron activation technique. J Radioanal Nucl Chem 293, 469–478 (2012). https://doi.org/10.1007/s10967-012-1815-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-1815-x

Keywords

Navigation