Skip to main content

Advertisement

Log in

Penning-trap mass measurements on 92, 94-98, 100Mo with JYFLTRAP

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Penning-trap measurements on stable 92, 94-98, 100Mo isotopes have been performed with relative accuracy of \(\ensuremath 1\cdot 10^{-8}\) with the JYFLTRAP Penning-trap mass spectrometer by using 85Rb as a reference. The Mo isotopes have been found to be about 3keV more bound than given in the Atomic Mass Evaluation 2003 (AME03). The results confirm that the discrepancy between the ISOLTRAP and JYFLTRAP data for 101-105Cd isotopes was due to an erroneous value in the AME03 for 96Mo used as a reference at JYFLTRAP. The measured frequency ratios of Mo isotopes have been used to update mass-excess values of 30 neutron-deficient nuclides measured at JYFLTRAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. Elomaa et al., Eur. Phys. J. A 40, 1 (2009)

    Article  ADS  Google Scholar 

  2. A. Martín et al., Eur. Phys. J. A 34, 341 (2007)

    Article  ADS  Google Scholar 

  3. M. Breitenfeldt et al., Phys. Rev. C 80, 035805 (2009)

    Article  ADS  Google Scholar 

  4. G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003)

    Article  ADS  Google Scholar 

  5. A. Jokinen et al., Int. J. Mass Spectrom. 251, 204 (2006)

    Article  ADS  Google Scholar 

  6. J. Äystö, Nucl. Phys. A 693, 477 (2001)

    Article  ADS  Google Scholar 

  7. H. Penttilä et al., Eur. Phys. J. A 25, 745 (2005)

    Article  Google Scholar 

  8. A. Nieminen et al., Nucl. Instrum. Methods Phys. Res. A 469, 244 (2001)

    Article  ADS  Google Scholar 

  9. V.S. Kolhinen et al., Nucl. Instrum. Methods Phys. Res. A 528, 776 (2004)

    Article  ADS  Google Scholar 

  10. G. Savard et al., Phys. Lett. A 158, 247 (1991)

    Article  ADS  Google Scholar 

  11. L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986)

    Article  ADS  Google Scholar 

  12. M. König et al., Int. J. Mass Spectrom. Ion Process. 142, 95 (1995)

    Article  ADS  Google Scholar 

  13. S. George et al., Int. J. Mass Spectrom. 264, 110 (2007)

    Article  ADS  Google Scholar 

  14. M. Kretzschmar, Int. J. Mass Spectrom. 264, 122 (2007)

    Article  ADS  Google Scholar 

  15. A. Kellerbauer et al., Eur. Phys. J. D 22, 53 (2003)

    Article  ADS  Google Scholar 

  16. R.T. Birge, Phys. Rev. 40, 207 (1932)

    Article  ADS  MATH  Google Scholar 

  17. V.-V. Elomaa et al., Nucl. Instrum. Methods Phys. Res. A 612, 97 (2009)

    Article  ADS  Google Scholar 

  18. G. Audi, Hyperfine Interact. 132, 7 (2001)

    Article  ADS  Google Scholar 

  19. Particle Data Group, Phys. Lett. B 667, 103 (2008)

    Article  ADS  Google Scholar 

  20. M.A. Islam, T.J. Kennett, W.V. Prestwich, Can. J. Phys. 69, 658 (1991)

    Article  ADS  Google Scholar 

  21. R. Firestone, Database of prompt gamma rays from slow neutron capture for elemental analysis (Lawrence Berkeley National Laboratory, 2004) lBNL Paper LBNL-55199

  22. R.R. Ries, R.A. Damerow, W.H. Johnson, Phys. Rev. 132, 1662 (1963)

    Article  ADS  Google Scholar 

  23. R. Bishop et al., Can. J. Phys. 41, 1532 (1963)

    Article  ADS  Google Scholar 

  24. L.M. Langer, D.E. Wortman, Phys. Rev. 132, 324 (1963)

    Article  ADS  Google Scholar 

  25. J. Äystö et al., Nucl. Phys. A 404, 1 (1983)

    Article  ADS  Google Scholar 

  26. J. Hamilton, K. Löbner, A. Sattler, R.V. Lieshout, Physica 30, 1802 (1964)

    Article  ADS  Google Scholar 

  27. R.E. Snyder, G.B. Beard, Phys. Rev. 147, 867 (1966)

    Article  ADS  Google Scholar 

  28. J.C. Hocquenghem, S. André, P. Liaud, J. Phys. France 29, 138 (1968)

    Article  Google Scholar 

  29. T. Cretzu, K. Hohmuth, J. Schintlmeister, Nucl. Phys. 70, 129 (1965)

    Article  Google Scholar 

  30. N. Antoneva et al., Izv. Akad. Nauk SSSR, Ser. Fiz. 38, 48 (1974)

    Google Scholar 

  31. C.N. Rao, B.M. Rao, P.M. Rao, K.V. Reddy, Proceedings of the 17 Nuclear Physics and Solid State Physics Symposium, Bombay Vol. 17 (Department of Atomic Energy, Government of India, 1974) p. 10.

  32. M.R. McPherson, F. Gabbard, Phys. Rev. C 7, 2097 (1973)

    Article  ADS  Google Scholar 

  33. G. Doukellis et al., Nucl. Phys. A 229, 47 (1974)

    Article  ADS  Google Scholar 

  34. B.D. Kern et al., Phys. Rev. C 18, 1938 (1978)

    Article  ADS  Google Scholar 

  35. R.L. Kozub, D.H. Youngblood, Phys. Rev. C 7, 404 (1973)

    Article  ADS  Google Scholar 

  36. P.K. Bindal, D.H. Youngblood, R.L. Kozub, Phys. Rev. C 10, 729 (1974)

    Article  ADS  Google Scholar 

  37. P. De Gelder et al., Phys. Rev. C 25, 146 (1982)

    Article  ADS  Google Scholar 

  38. J.R. Comfort, R.W. Finlay, C.M. McKenna, P.T. Debevec, Phys. Rev. C 10, 1236 (1974)

    Article  ADS  Google Scholar 

  39. D.J. Martin, M.R. Macphail, Phys. Rev. C 13, 1117 (1976)

    Article  ADS  Google Scholar 

  40. R.C. Pardo et al., Phys. Rev. C 21, 462 (1980)

    Article  ADS  Google Scholar 

  41. R.F. Casten, E.R. Flynn, O. Hansen, T.J. Mulligan, Nucl. Phys. A 184, 357 (1972)

    Article  ADS  Google Scholar 

  42. E.R. Flynn, R.E. Brown, F. Ajzenberg-Selove, J.A. Cizewski, Phys. Rev. C 28, 575 (1983)

    Article  ADS  Google Scholar 

  43. C. Wagemans, J. Wagemans, G. Goeminne, Hyperfine Interact. 132, 323 (2001)

    Article  ADS  Google Scholar 

  44. H. Seyfarth et al., Fizika (Croatia) 22, 183 (1990)

    Google Scholar 

  45. A. Kankainen et al., Eur. Phys. J. A 29, 271 (2006)

    Article  ADS  Google Scholar 

  46. C. Weber et al., Phys. Rev. C 78, 054310 (2008)

    Article  ADS  Google Scholar 

  47. G. Audi, O. Bersillon, J. Blachot, A.H. Wapstra, Nucl. Phys. A 729, 3 (2003)

    Article  ADS  Google Scholar 

  48. J. Döring, A. Aprahamian, M. Wiescher, J. Res. Natl. Inst. Stand. Technol. 105, 43 (2000)

    Article  Google Scholar 

  49. A. Kankainen et al., Eur. Phys. J. A 25, 355 (2005)

    Article  ADS  Google Scholar 

  50. A.H. Wapstra, G. Audi, C. Thibault, Nucl. Phys. A 729, 129 (2003)

    Article  ADS  Google Scholar 

  51. H. Schatz et al., Phys. Rep. 294, 167 (1998)

    Article  ADS  Google Scholar 

  52. H. Schatz, Int. J. Mass Spectrom. 251, 293 (2006)

    Article  ADS  Google Scholar 

  53. C. Fröhlich et al., Phys. Rev. Lett. 96, 142502 (2006)

    Article  ADS  Google Scholar 

  54. J. Pruet et al., Astrophys. J. 644, 1028 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kankainen.

Additional information

Communicated by E. De Sanctis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kankainen, A., Kolhinen, V.S., Elomaa, V.V. et al. Penning-trap mass measurements on 92, 94-98, 100Mo with JYFLTRAP. Eur. Phys. J. A 48, 47 (2012). https://doi.org/10.1140/epja/i2012-12047-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2012-12047-0

Keywords

Navigation