Skip to main content
Log in

Mechanisms of sequential particle transfer and characteristics of light neutron-excess and oriented nuclei

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The procedure for evaluating the second-order corrections to the matrix elements of the reaction A(x, y)B, which are obtained using the method of distorted waves with a finite radius of intercluster interaction (DWBAFR), is developed. It is based on the assumption of a virtual cluster structure of light nuclei and uses integral equations for a four-body problem in the Alt-Grassberger-Sandhas formalism. These corrections are related with the mechanisms of sequential particles transfer. The latter are represented by the quadrangle diagrams. Their matrix elements are summed up coherently with those given by the pole and triangle diagrams which were calculated by using DWBAFR. The computer code QUADRO is written for the numerical implementation of the method proposed. The statistical tensors of nucleus B formed in the reaction A(x, y)B at incident particle energies of about 10 MeV/nucleon in the center of mass frame are determined. Specific calculations allowed for description of both the experimental cross sections (0-rank statistical tensors) of various reactions (including those where nucleus B has some excess neutrons) and polarized characteristics of nucleus B* (in the case of the latter produced in the exited state). A two-neutron periphery of nuclei 6He, 10Be, 12B (both in dineutron and cigarlike configurations) is restored by analyzing the differential cross sections of elastic alpha-6He-scattering and 9Be(d, p)10Be and 10B(t, p)12B reactions. It is shown that the structure of neutron peripheries is fundamentally different for these nuclei and its feature depends on the way those neutron-excess nuclei are formed: in 6He both configurations contribute to a two-neutron halo, while in 10Be there is a barely noticeable one-neutron halo, and in 12B there is a “dineutron skin”. Orientation characteristics of nuclei B* are calculated. Their comparison with experimental data made it possible to draw important conclusions about a contribution to the statistical tensors of nucleus B* coming from the two-step mechanisms and its impact on the properties of oriented light nuclei, including their polarization. Finally, a simplified method for calculating the matrix elements of mechanisms, which take into account sequential particle transfer, is proposed. It is demonstrated to be correct by evaluating a contribution of the corresponding corrections to the total amplitude of the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. G. Neudatchin and Yu. F. Smirnov, Nucleon Associations in Light Nuclei (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  2. L. D. Faddeev, Mathematical Aspects of Three Body Problem in Quantum Scattering Theory (Daniel Davey, New York, 1965).

    MATH  Google Scholar 

  3. N. Austern, R. M. Drisko, E. C. Halbert, and G. R. Satchler, “Theory of Finite-Range Distorted Waves Calculations,” Phys. Rev. B 133, 3–16 (1964).

    Article  ADS  Google Scholar 

  4. N. S. Zelenskaya and I. B. Teplov, Exchange Processes in Nuclear Reactions (Mosk. Gos. Univ., Moscow, 1985) [in Russian].

    Google Scholar 

  5. O. A. Yakubovskii, “On the Integral Equations in the Theory of N Particle Scattering,” Sov. J. Nucl. Phys. 5, 937 (1967).

    Google Scholar 

  6. C. Lovelas, “Practical Theory of Three-Particle States. 1. Nonrelativistic,” Phys. Rev. B 135, 1225–1249 (1964).

    Article  ADS  Google Scholar 

  7. P. Grassberger and W. Sandhas, “Systematical Treatment of the Non-Relativistic N-Particle Scattering Problem,” Nucl. Phys. B 2, 181–206 (1967).

    Article  ADS  Google Scholar 

  8. S. Weinberg, “Systematical Solution of Multi-Particle Scattering Problems,” Phys. Rev. B 133, 232–256 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  9. E. Shmid and Kh. Tsigel’man, in “Problem of Three-Body in Quantum Mechanics” (Nauka, Moscow, 1979), pp. 151–154 [in Russian].

    Google Scholar 

  10. E. O. Alt, P. Grassberger, and W. Sandhas, “Derivation of the DWBA in Exact Three-Body Theory,” Nucl. Phys. A 139, 209–229 (1969).

    Article  ADS  Google Scholar 

  11. E. A. Edakova, V. G. Neudatchin, and E. A. Romanovskii, “Possible Manifestation of a Second-Order Process in Deuteron Inelastic Scattering by Nuclei,” Sov. Phys. JETP 11, 180 (1960).

    Google Scholar 

  12. I. Bang, N. S. Zelenskaya, E. Zh. Makzumov, et al., “Manifestation of Mechanisms Described by Qaudrangle Diagram in the (t,p) (3He,p) Reactions in Nuclei of 1p-Shell,” Sov. J. Nucl. Phys. 4, 688 (1966).

    Google Scholar 

  13. V. G. Neudatchin, N. S. Zelenskaya, E. G. Magsumov, et al., “Quadrangle Diagrams in the (p, p′), (d,d′), (t, p) − (3He, p) Reactions in Some Nuclei of p-Shell and Simple Method for Calculating Their Angular Distributions,” Phys. Lett. B 27, 490–493 (1968).

    Article  ADS  Google Scholar 

  14. N. S. Zelenskaya, “Manifestation of Mechanisms, Described by Quadrangle Diagram in the Reactions with Heavy Ions Stripping (Pickup),” Sov. J. Nucl. Phys. 13, 417 (1971).

    Google Scholar 

  15. R. Middleton and D. J. Pullen, “A Study of Some (t, p) Reactions. Method and Results for 7Li, 10B and 11B,” Nucl. Phys. A 51, 50–62 (1964).

    Article  Google Scholar 

  16. J. H. Towle and B. E. F. Macefield, “A Study of 9Be(3He,n)11C Reaction,” Nucl. Phys. A 66, 65–79 (1965).

    Article  Google Scholar 

  17. M. C. Taylor and G. C. Phyllips, “A Study of the Reaction 9Be(3He,6Li) 6Li,” Nucl. Phys. A 126, 615–627 (1969).

    Article  ADS  Google Scholar 

  18. J. Bang and S. A. Wollesen, “A Two-Step Process on Two-Particle Transfer Reactions,” Phys. Lett. D 33, 395–399 (1970).

    Article  ADS  Google Scholar 

  19. N. B. de Tacassy, “On the Contribution from a Two-Step Mechanism, Involving the Sequential Transfer of Two Neutrons, to the Calculation of (t, p) Reaction Cross Sections,” Nucl. Phys. A 231, 243–256 (1974).

    Article  ADS  Google Scholar 

  20. N. Hashimoto and M. Kawai, “The (p-d-t) Process in Strong (p, t) Transitions,” Phys. Lett. B 59, 243–256 (1975).

    ADS  Google Scholar 

  21. R. L. Jaffe and W. J. Gerace, “Formfactors for Two-Nucleon Transfer Reactions,” Nucl. Phys. A 125, 1–27 (1969).

    Article  ADS  Google Scholar 

  22. B. F. Bayman and A. Kallio, “Relative-Angular-Momentum-Zero Part of Two-Nucleon Wave Functions,” Phys. Rev. 156, 1121–1128 (1967).

    Article  ADS  Google Scholar 

  23. P. J. Iano and W. T. Pinkston, “Aspects of Two-Nucleon Transfer Reactions,” Nucl. Phys. A 237, 189–214 (1975).

    Article  ADS  Google Scholar 

  24. J. Bang and F. A. Gareev, “Wave Functions and Particle Transfer Formfactors of 42Ca and 18O,” Nucl. Phys. A 232, 45–57 (1974).

    Article  ADS  Google Scholar 

  25. N. Austern, Direct Nuclear Reaction Theories (Wiley-Intersci., New York, 1970)).

    Google Scholar 

  26. W. R. Coker, T. Udagava, and H. H. Wolter, “Coupled-Reaction-Channels Study of (h, p) Reactions,” Phys. Rev. C 7, 1154–1165 (1973).

    Article  ADS  Google Scholar 

  27. R. O. Nelson and N. R. Robertson, “The Evidence of Two-Step Process in the Spherical-Nuclei-Reactions,” Phys. Lett. B 43, 389–393 (1973).

    ADS  Google Scholar 

  28. R. H. Ibarra, “Nuclear Overlaps in Two-Particle Transfer Reactions,” Nucl. Phys. A 211, 317–322 (1973).

    Article  ADS  Google Scholar 

  29. R. H. Ibarra, M. Vallieres, and D. H. Fang, “Extended Basis Shell-Model Study of Two-Nucleon Transfer Reactions,” Nucl. Phys. A 256, 21–26 (1976).

    Article  ADS  Google Scholar 

  30. N. S. Zelenskaya and I. B. Teplov, Properties of Excited Nuclear States and Angular Correlations in Nuclear Reactions (Energoatomizdat, Moscow, 1995) [in Russian].

    Google Scholar 

  31. L. I. Galanina and N. S. Zelenskaya, “Delayed Mechanism Accounting in Direct Nuclear Reactions on Nuclei of 1p-Shell,” Izv. Akad. Nauk, Ser. Fiz. 64, 496–499 (2000).

    Google Scholar 

  32. S. Sunakawa, Quantum Scattering Theory (Iwanami Shote, Tokyo, Japan, 1977; Mir, Moscow, 1979).

    Google Scholar 

  33. T. L. Belyaeva, P. N. Zaikin, N. S. Zelenskaya, A. M. Sokolov, and I. B. Teplov, OLYMP Calculation Program for Reaction Cross-Sections with Complex Particles by the Distorted-Wave Method with Finite Interaction Radius (Mosk. Gos. Univ., Moscow, 1981) [in Russian].

    Google Scholar 

  34. A. G. Sitenko, Theory of Nuclear Reactions (Energoatomizdat, Moscow, 1983) [in Russian].

    Google Scholar 

  35. A. N. Boyarkina, Structure of 1 p-Shell Nuclei (Mosk. Gos. Univ., Moscow, 1973) [in Russian].

    Google Scholar 

  36. L. I. Galanina and N. S. Zelenskaya, “Manifestations of a Dineutron Cluster in Elastic α6He Scattering,” Phys. At. Nucl. 65, 1282 (2002).

    Article  Google Scholar 

  37. R. Raabe, L. I. Galanina, N. S. Zelenskaya, et al., “2n-Transfer Contribution in the 4He(6He, 6He)4He Cross Section at E c.m. = 11.6 MeV,” Phys. Rev. C 67, 044602 (2003).

    Article  ADS  Google Scholar 

  38. L. I. Galanina and N. S. Zelenskaya, “Mechanism of Independent Neutron Transfer in Elastic α6He Scattering and Structure of the 6He Nuclear Wave Function,” Phys. At. Nucl. 70, 283 (2007).

    Article  Google Scholar 

  39. R. Raabe, A. Piechaczek, A. Andreev, et al., “Elastic 2n-Transfer in the 4He(6He,6He)4He Scattering,” Phys. Lett. B 458, 1–7 (1999).

    Article  ADS  Google Scholar 

  40. Yu. A. Penionzhkevich, “Nuclear Astrophysics,” Phys. At. Nucl. 73, 1460 (2010).

    Article  Google Scholar 

  41. M. Blann and M. B. Chadwick, “New Precompound Model: Angular Distributions,” Phys. Rev. C 57, 233–243 (1998).

    Article  ADS  Google Scholar 

  42. A. J. Koning and J. P. Delaroche, “Global Potential,” Nucl. Phys. A 713, 231 (2003).

    Article  ADS  Google Scholar 

  43. M. Herman, www.nds.iaea.org/empire/.

  44. V. M. Lebedev, N. V. Orlova, and A. V. Spasskii, “Multistep Processes in 9Be(d, pγ)10Be Reaction at E d = 12.5 MeV,” Phys. At. Nucl. 61, 1493 (1998).

    Google Scholar 

  45. N. S. Zelenskaya et al., “Correlation Features of the Reaction 9Be(d, pγ)10Be at E d = 15.3 MeV and Structure of the 10Be Nucleus,” Phys. At. Nucl. 64, 1909 (2001).

    Article  Google Scholar 

  46. L. I. Galanina et al., “Investigation of the 10B(d, pγ)11B Reaction Mechanism at E d = 15.3 MeV by the Method of Angular pγ Correlations,” Phys. At. Nucl. 68, 1957 (2005).

    Article  Google Scholar 

  47. P. D. Kunz, http://spot.colorado.edu/~kunz/Home.html.

  48. F. Ajsenberg-Selove, E. R. Flynn, and O. Hansen, “(t, p) Reaction on 4He, 6Li, 7Li, 9Be, 10B, 11B and 12C,” Phys. Rev. C 17, 516–521 (1978).

    Article  Google Scholar 

  49. L. I. Galanina and N. S. Zelenskaya, “The Role of Various Mechanisms in the Formation of the 12B Nucleus in the 10B(t, p)12B Reaction,” Izv. Akad. Nauk SSSR, Ser. Fiz. 72, 331–335 (2008).

    Google Scholar 

  50. A. A. Korsheninnikov, “Analysis of Three-Particle Decay Properties of Nuclei with A = 12 and 16 in K-Harmonics Method,” Sov. J. Nucl. Phys. 52, 827 (1990).

    Google Scholar 

  51. A. A. Korcheninnikov and T. Kobayashi, “Main Mechanisms in Fragmentation of Exotic Nucleus,” Nucl. Phys. A 567, 97–110 (1994).

    Article  ADS  Google Scholar 

  52. A. A. Korcheninnikov, D. Yochida, D. A. Aleksandrov, et al., “Spectroscopy of 12Be and 13Be Using a 12Be Radioactive Beam,” Phys. Lett. B 343, 53–58 (1995).

    Article  ADS  Google Scholar 

  53. A. A. Korcheninnikov, E. Yu. Nikolskii, T. Kobayashi, et al., “Spectroscopy of the Halo Nucleus 11Li by Experimental Study of 11Li + p Collisions,” Phys. Rev. C 53, 537–550 (1996).

    Article  ADS  Google Scholar 

  54. M. G. Gornov, Yu. B. Gurov, and V. A. Pechkurov, “Excited States of 11Li,” Phys. Rev. Lett. 81, 4325–4328 (1998).

    Article  ADS  Google Scholar 

  55. Yu. B. Gurov, S. V. Lapushkin, B. A. Chernyshov, and V. G. Sandunovskii, “Search for Superheavy Hydrogen Isotopes in Pion Absorption Reactions,” Phys. Part. Nucl. 40, 558 (2009).

    Article  Google Scholar 

  56. Yu. B. Gurov et al., “Spectroscopy of the 10Li Isotope in Stopped Pion Absorption Reactions on a 14C Radioactive Target,” Izv. Akad. Nauk, Ser. Fiz. 75, 495–498 (2011).

    Google Scholar 

  57. A. A. Korsheninnikov, “Nuclear Exotics near and above the Stability Boundary,” Doctoral Dissertation in Physics and Mathematics (Moscow, 1996).

  58. V. I. Kukulin, V. M. Krasnopol’sky, V. T. Voronchev and P. V. Sazonov, “Detailed Study of the Cluster Structure of Light Nuclei in Three-Body Problem. (II). The Spectrum of Low-Lying States of Nuclei with A = 6,” Nucl. Phys. A 453, 365–388 (1986).

    Article  ADS  Google Scholar 

  59. B. V. Danilin and M. V. Zhukov, “Resonance 3→3 Scattering and Structure of the Excited States of A = 6 Nuclei,” Phys. At. Nucl. 56, 460 (1993).

    Google Scholar 

  60. S. N. Ershov and B. V. Danilin, “Breakup Reactions of Two-Neutron-Halo Nuclei,” Phys. Part. Nucl. 39, 835 (2008).

    Article  Google Scholar 

  61. S. N. Ershov and B. V. Danilin, “Excitation of Two-Neutron-Halo Nuclei in a Continuum,” Phys. At. Nucl. 72, 1704 (2009).

    Article  Google Scholar 

  62. E. T. Ibraeva, M. A. Zhusupov, and O. Imambekov, “Structure of Light Neutron-Rich Nuclei and Mechanism of Elastic Proton Scattering,” Phys. At. Nucl. 74, 1595 (2011).

    Article  Google Scholar 

  63. V. P. Zavarzina, E. S. Konobeevskii, and A. V. Stepanov, “The Role of Configurations of Neutron Halo in the Formation of the Model Vertex Function for Description of the Two-Neutron Transfer Reaction,” Izv. Akad. Nauk, Ser. Fiz., No. 3, 845–856 (2008).

  64. G. E. Belovitskii et al., “Quasifree Proton Scattering on Halo Nuclei as a Tool for Studying the Neutron-Halo Structure,” Phys. At. Nucl. 72, 1714 (2009).

    Article  Google Scholar 

  65. L. I. Galanina and N. S. Zelenskaya, “Neutron Periphery in Light Nuclei,” Phys. At. Nucl. 72, 1695 (2009).

    Article  Google Scholar 

  66. TsDFE. http://cdfe.sinp.msu.ru

  67. G. M. Ter-Akopian, A. M. Rodin, A. S. Fomichev, et al., “Two-Neutron Exchange Observed in the 6He+6He Reaction Search for the “Di-Neutron” Configuration of 6He,” Phys. Lett. B 426, 251–256 (1998).

    Article  ADS  Google Scholar 

  68. Fergyusson

  69. L. I. Galanina and N. S. Zelenskaya, “Statistical Tensors of Complex Systems,” Izv. Akad. Nauk, Ser. Fiz. 70, 1627–1632 (2006).

    Google Scholar 

  70. L. S. Bidenharn and M. E. Rose, “Theory of Angular Correlation of Nuclear Radiations,” Rev. Mod. Phys. 25, 729–777 (1953).

    Article  ADS  Google Scholar 

  71. K. Blum, Density Matrix Theory and Applications (Physics of Atoms and Molecules) (Springer, New York, 1996; Fizmatlit, Moscow, 1959).

    Google Scholar 

  72. L. I. Galanina and N. S. Zelenskaya, “Calculation of the Properties of Binary Nuclear Reactions with consideration of the Spin-Orbit Interaction,” Izv. Akad. Nauk, Ser. Fiz. 64, 954–959 (2000).

    Google Scholar 

  73. L. I. Galanina et al., “Investigation of the 13C(d, α)11B Reaction Mechanism at E d = 15.3 MeV,” Bull. Russ. Acad. Sci., Phys. 73, 806–809 (2009).

    Article  Google Scholar 

  74. L. I. Galanina et al., “Study of Orientation Characteristics of 11B(5/2, 4.445 MeV) Nucleus the in 13C(d, αγ)11B Reaction at E d = 15.3 MeV,” Bull. Russ. Acad. Sci., Phys. 74, 447 (2010).

    Article  Google Scholar 

  75. W. Hauser and H. Feschbach, Phys. Rev. 87, 336 (1952).

    Article  ADS  Google Scholar 

  76. H. Feschbach and V. I. Weisskopf, Phys. Rev. 76, 1550 (1949).

    Article  ADS  Google Scholar 

  77. T. L. Belyaeva, N. S. Zelenskaya, and N. V. Odintsov, “Computation of Correlation Characteristics of Nuclear Reactions Induced by Semi-Heavy Ions,” Comp. Phys. Commun. 73, 161–169 (1992).

    Article  ADS  Google Scholar 

  78. S. V. Perrey and F. G. Perrey, Atom. Data Nucl. Data Tables 17, 1-1–1 (1976).

    Article  ADS  Google Scholar 

  79. O. I. Vasil’eva et al., “Determination of the Spin-Tensor Components of Density Matrix for 4.43 MeV(2+) State of 12C Nucleus in (3He, αγ) Reaction,” Izv. Akad. Nauk SSSR, Ser. Fiz. 48, 1959–1964 (1984).

    Google Scholar 

  80. V. M. Lebedev, N. V. Orlova, and A. V. Spasskii, “Determination of the Deformation of the 12C Nucleus from Angular Correlations in the 11B(α, tγ)12C and 13C(3He, αγ)12C Reactions,” Phys. At. Nucl. 62, 1455 (1999).

    Google Scholar 

  81. L. I. Galanina and N. S. Zelenskaya, “Role of Various Mechanisms in the Formation of a 12C Nucleus in the 13C(3He, α)12C Reaction,” Phys. At. Nucl. 70, 848 (2007).

    Article  Google Scholar 

  82. N. S. Zelenskaya et al., “General Features of Multi-Nucleon Transfer Reaction on Nuclei of 1p Shell,” Sov. J. Nucl. Phys. 6, 47 (1967).

    Google Scholar 

  83. L. I. Galanina and N. S. Zelenskaya, “Simplified Method to Calculate Amplitudes of Delay-Involving Mechanisms,” Izv. Akad. Nauk, Ser. Fiz. 69, 1741–1745 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Galanina.

Additional information

Original Russian Text © L.I. Galanina, N.S. Zelenskaya, 2012, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2012, Vol. 43, No. 2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galanina, L.I., Zelenskaya, N.S. Mechanisms of sequential particle transfer and characteristics of light neutron-excess and oriented nuclei. Phys. Part. Nuclei 43, 147–186 (2012). https://doi.org/10.1134/S1063779612020049

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779612020049

Keywords

Navigation