Skip to main content
Log in

Matter radii and wave function admixtures in 2n halo nuclei

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In a simple potential model, we have computed matter radii for several 2n halo nuclei. Results are used to estimate wave function admixtures for these nuclei. Comparison is made with experimental and other calculated values. We propose a tighter limit on the binding energy of 19B : \(\ensuremath B_{2n}=0.55^{+0.20}_{-0.16}\) MeV, replacing the previous value of 0.5(4)MeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Sherr, Phys. Rev. C 54, 1177 (1996)

    Article  ADS  Google Scholar 

  2. A. Bhagwat, Y.K. Gambhir, S.H. Patil, Eur. Phys. J. A 8, 511 (2000)

    Article  ADS  Google Scholar 

  3. W. Horiuchi, Y. Suzuki, Phys. Rev. C 74, 034311 (2006)

    Article  ADS  Google Scholar 

  4. B. Abu-Ibrahim, W. Horiuchi, A. Kohama, Y. Suzuki, Phys. Rev. C 77, 034607 (2008)

    Article  ADS  Google Scholar 

  5. M.T. Yamashita, R.S. Marques de Carvalho, T. Frederico, Lauro Tomio, Phys. Lett. B 697, 90 (2011)

    Article  ADS  Google Scholar 

  6. M. Sharma, A. Bhagwat, Z.A. Khan, W. Haider, Y.K. Gambhir, Phys. Rev. C 83, 031601(R) (2011)

    Article  ADS  Google Scholar 

  7. Y. Yamaguchi et al., Phys. Rev. C 70, 054320 (2004)

    Article  ADS  Google Scholar 

  8. B. Buck, A.A. Pilt, Nucl. Phys. A 280, 133 (1977)

    Article  ADS  Google Scholar 

  9. K. Tanaka et al., Phys. Rev. Lett. 104, 062701 (2010)

    Article  ADS  Google Scholar 

  10. H.T. Fortune, R. Sherr, Eur. Phys. J. A 47, 154 (2011)

    Article  ADS  Google Scholar 

  11. A. Ozawa et al., Nucl. Phys. A 691, 599 (2001)

    Article  ADS  Google Scholar 

  12. T. Suzuki et al., Nucl. Phys. A 658, 313 (1999)

    Article  ADS  Google Scholar 

  13. E. Liatard et al., Europhys. Lett. 13, 401 (1990)

    Article  ADS  Google Scholar 

  14. I. Tanihata et al., Phys. Lett. B 206, 592 (1988)

    Article  ADS  Google Scholar 

  15. A. Ozawa et al., Phys. Lett. B 334, 18 (1994)

    Article  ADS  Google Scholar 

  16. T. Suzuki et al., Phys. Rev. Lett. 89, 012501 (2002)

    Article  ADS  Google Scholar 

  17. H.T. Fortune, R. Sherr, Phys. Rev. C 85, 027303 (2012)

    Article  ADS  Google Scholar 

  18. G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003)

    Article  ADS  Google Scholar 

  19. T. Roger et al., Phys. Rev. 79, 031603 (2009)

    ADS  Google Scholar 

  20. C. Gaulard et al., Nucl. Phys. A 826, 1 (2009)

    Article  ADS  Google Scholar 

  21. M. Smith et al., Phys. Rev. Lett. 101, 202501 (2008)

    Article  ADS  Google Scholar 

  22. C. Thibault, R. Klapisch, C. Rigaud, A.M. Poskanzer, R. Prieels, L. Lessard, W. Reisdorf, Phys. Rev. C 12, 644 (1975)

    Article  ADS  Google Scholar 

  23. J.M. Wouters, R.H. Kraus jr., D.J. Viera, G.W. Butler, K.E.G. Lobner, Z. Phys. A 331, 229 (1988)

    ADS  Google Scholar 

  24. T. Kobayashi, K. Nakai, R. Gilman, H. Baer, S. Greene, J.M. O’Donnell, H.T. Fortune, M. Kagarlis, K. Johnson, S. Mukhopadyay, KEK Preprint 91-22 (1991) (unpublished)

  25. T. Kobayashi, Nucl. Phys. A 553, 465c (1993)

    Article  ADS  Google Scholar 

  26. T. Kobayashi, Nucl. Phys. A 538, 343c (1992)

    Article  ADS  Google Scholar 

  27. B.M. Young et al., Phys. Rev. Lett. 71, 4124 (1993)

    Article  ADS  Google Scholar 

  28. R. Sherr, H.T. Fortune, Phys. Rev. C 60, 064323 (1999)

    Article  ADS  Google Scholar 

  29. N.B. Shulgina, B. Jonson, M.V. Zhukov, Nucl. Phys. A 825, 175 (2009)

    Article  ADS  Google Scholar 

  30. I. Tanihata et al., Phys. Rev. Lett. 55, 2676 (1985)

    Article  ADS  Google Scholar 

  31. A. Ozawa, T. Suzuki, I. Tanihata, Nucl. Phys. A 693, 32 (2001)

    Article  ADS  Google Scholar 

  32. J.S. Al-Khalili, A. Tostevin, Phys. Rev. Lett. 76, 3903 (1996)

    Article  ADS  Google Scholar 

  33. T. Myo, K. Kato, H. Toki, K. Ikeda, Phys. Rev. C 76, 024305 (2007)

    Article  ADS  Google Scholar 

  34. H. Esbensen, K. Hagino, P. Mueller, H. Sagawa, Phys. Rev. C 76, 024302 (2007)

    Article  ADS  Google Scholar 

  35. G.F. Bertsch, K. Hencken, H. Esbensen, Phys. Rev. C 57, 1366 (1998)

    Article  ADS  Google Scholar 

  36. H. Esbensen, G.F. Bertsch, K. Hencken, Phys. Rev. C 56, 3054 (1997)

    Article  ADS  Google Scholar 

  37. K. Hagino, H. Sagawa, Phys. Rev. C 84, 011303(R) (2011)

    Article  ADS  Google Scholar 

  38. A.V. Dobrovolsky et al., Nucl. Phys. A 766, 1 (2006)

    Article  ADS  Google Scholar 

  39. G. Gori, F. Barranco, E. Vigezzi, R.A. Broglia, Phys. Rev. C 69, 041302(R) (2004)

    Article  ADS  Google Scholar 

  40. F. Barranco et al., Eur. Phys. J. A 11, 385 (2001)

    Article  ADS  Google Scholar 

  41. W. Norterhauser, T. Neff, R. Sanchez, I. Sick, Phys. Rev. C 84, 024307 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Äystö

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fortune, H.T., Sherr, R. Matter radii and wave function admixtures in 2n halo nuclei. Eur. Phys. J. A 48, 103 (2012). https://doi.org/10.1140/epja/i2012-12103-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2012-12103-9

Keywords

Navigation