Skip to main content
Log in

Shell-model results in fp and fpg 9/2 spaces for 61,63,65Co isotopes

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Low-lying spectra and several high-spin states of odd-even 61,63,65Co isotopes are calculated in two different shell-model spaces. First set of calculations have been carried out in fp-shell valence space (full fp space for 63,65Co and a truncated one for 61Co) using two recently derived fp-shell interactions, namely GXPF1A and KB3G, with 40Ca as core. Similarly, the second set of calculations have been performed in fpg 9/2 valence space using an fpg effective interaction due to Sorlin et al., with 48Ca as core and imposing a truncation. It is seen that the results of GXPF1A and KB3G are reasonable for 61,63Co. For 65Co, shell-model results show that the fpg interaction adopted in the study is inadequate and also points out that it is necessary to include orbitals higher than 1g 9/2 for neutron-rich Co isotopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Lunardi et al., Phys. Rev. C 76, 034303 (2007).

    Article  ADS  Google Scholar 

  2. J. J. Valiente-e-Dobón et al., Phys. Rev. C 78, 024302 (2008).

    Article  ADS  Google Scholar 

  3. D. Steppenbeck et al., Phys. Rev. C 81, 014305 (2010).

    Article  ADS  Google Scholar 

  4. O. Sorlin et al., Phys. Rev. Lett. 88, 092501 (2002).

    Article  ADS  Google Scholar 

  5. K. T. Flanagan et al., Phys. Rev. Lett. 103, 142501 (2009).

    Article  ADS  Google Scholar 

  6. J. M. Daugas et al., Phys. Rev. C 81, 034304 (2010).

    Article  ADS  Google Scholar 

  7. J. Van de Walle et al., Phys. Rev. Lett. 99, 142501 (2007).

    Article  ADS  Google Scholar 

  8. K. Kaneko, Y. Sun, M. Hasegawa, and T. Mizusaki, Phys. Rev. C 78, 064312 (2008).

    Article  ADS  Google Scholar 

  9. P. C. Srivastava and I. Mehrotra, J. Phys. G 36, 105106 (2009).

    Article  ADS  Google Scholar 

  10. P. C. Srivastava and I. Mehrotra, Phys. At. Nucl. 73, 1656 (2010).

    Article  Google Scholar 

  11. P. C. Srivastava and I. Mehrotra, Eur. Phys. J. A 45, 185 (2010).

    Article  ADS  Google Scholar 

  12. Y. Sun, Y.-C. Yang, H.-L. Liu, et al., Phys. Rev. C 80, 054306 (2009).

    Article  ADS  Google Scholar 

  13. N. Aoi et al., Phys. Rev. Lett. 102, 012502 (2009).

    Article  ADS  Google Scholar 

  14. A. Gade et al., Phys. Rev. C 81, 051304(R) (2010).

    ADS  Google Scholar 

  15. J. Ljungvall et al., Phys. Rev.C 81, 061301(R) (2010).

    Article  ADS  Google Scholar 

  16. P. H. Regan, J. W. Arrison, U. J. Hüttmeier, and D. P. Balamuth, Phys. Rev. C 54, 1084 (1996).

    Article  ADS  Google Scholar 

  17. L. Gaudefroy, PhD Thesis (Univ. de Paris XI, Orsay, 2005).

  18. D. Pauwels et al., Phys. Rev. C 78, 041307(R) (2008).

    Article  MathSciNet  ADS  Google Scholar 

  19. D. Pauwels et al., Phys. Rev. C 79, 044309 (2009).

    Article  ADS  Google Scholar 

  20. O. Sorlin et al., Nucl. Phys. A 669, 351 (2000).

    Article  ADS  Google Scholar 

  21. W. F. Mueller et al., Phys. Rev. Lett. 83, 3613 (1999).

    Article  ADS  Google Scholar 

  22. L. Weissman et al., Phys. Rev. C 59, 2004 (1999).

    Article  ADS  Google Scholar 

  23. W. F. Mueller et al., Phys. Rev. C 61, 054308 (2000).

    Article  ADS  Google Scholar 

  24. M. Sawicka et al., Eur. Phys. J. A 22, 455 (2004).

    Article  ADS  Google Scholar 

  25. A. G. M. van Hees and P. W. M. Glaudemans, Z. Phys. A 303, 267 (1981).

    Article  ADS  Google Scholar 

  26. P. C. Srivastava, PhD Thesis (Univ. of Allahabad, Allahabad, India, 2010).

  27. M. Hjorth-Jensen, T. T. S. Kuo, and E. Osnes, Phys. Rep. 261, 125 (1995).

    Article  ADS  Google Scholar 

  28. M. Honma, T. Otsuka, B. A. Brown, and T. Mizusaki, Phys. Rev. C 65, 061301(R) (2002).

    Article  ADS  Google Scholar 

  29. D.-C. Dinca et al., Phys. Rev. C 71, 041302(R) (2005).

    Article  ADS  Google Scholar 

  30. B. Fornal et al., Phys. Rev. C 70, 064304 (2004).

    Article  ADS  Google Scholar 

  31. M. Honma, T. Otsuka, B. A. Brown, and T. Mizusaki, Eur. Phys. J. A 25, s1.499 (2005).

    Article  Google Scholar 

  32. A. Poves, J. Sanchez-Solano, E. Caurier, and F. Nowacki, Nucl. Phys. A 694, 157 (2001).

    Article  ADS  Google Scholar 

  33. F. Nowacki, PhD Thesis (IReS, Strasbourg, 1996).

  34. S. Kahana, H. C. Lee, and C. K. Scott, Phys. Rev. 180, 956 (1969).

    Article  ADS  Google Scholar 

  35. E. Caurier, Computer code ANTOINE (CRN, Strasbourg, 1989, unpublished).

    Google Scholar 

  36. E. Caurier and F. Nowacki, Acta Phys. Polon. B 30, 705 (1999).

    ADS  Google Scholar 

  37. J. Bron, H. W. Jongsma, and H. Verheul, Phys. Rev. C 11, 966 (1975).

    Article  ADS  Google Scholar 

  38. J. F. Mateja et al., Phys. Rev. C 13, 2269 (1976).

    Article  ADS  Google Scholar 

  39. K. L. Coop, I. G. Graham, and E. Titterton, Nucl. Phys. A 150, 346 (1970).

    Article  ADS  Google Scholar 

  40. E. Runte et al., Nucl. Phys. A 441, 237 (1985).

    Article  ADS  Google Scholar 

  41. K. Heyde, P. Van Isacker, M. Waroquier, et al., Phys. Rep. 102, 291 (1983).

    Article  ADS  Google Scholar 

  42. E. Caurier, G. Martinez-Pinedo, F. Nowacki, et al., Rev. Mod. Phys. 77, 427 (2005).

    Article  ADS  Google Scholar 

  43. T. Otsuka, T. Matsuo, and D. Abe, Phys. Rev. Lett. 97, 162501 (2006).

    Article  ADS  Google Scholar 

  44. M. Honma, T. Otsuka, T. Mizusaki, and M. Hjorth-Jensen, Phys. Rev. C 80, 064323 (2009).

    Article  ADS  Google Scholar 

  45. S. M. Lenzi, F. Nowacki, A. Poves, and K. Sieja, Phys. Rev. C 82, 054301 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. C. Srivastava.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, P.C., Kota, V.K.B. Shell-model results in fp and fpg 9/2 spaces for 61,63,65Co isotopes. Phys. Atom. Nuclei 74, 971–978 (2011). https://doi.org/10.1134/S1063778811070143

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778811070143

Keywords

Navigation