Skip to main content
Log in

New mass data for the rp-process above Z = 32

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

High-accuracy mass measurements have been performed with the Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN. The short-lived nuclides 70, 71, 72, 73Se , 72, 73, 74, 75Br , and 98, 99, 100, 101, 103Ag have been measured with an average uncertainty of a few keV. The data are important input for nucleosynthesis calculations of the rp-process beyond Z = 32 .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Lunney, J.M. Pearson, C. Thibault, Rev. Mod. Phys. 75, 1021 (2003).

    Article  ADS  Google Scholar 

  2. K. Blaum, Phys. Rep. 425, 1 (2006).

    Article  ADS  Google Scholar 

  3. A. Kellerbauer et al., Eur. Phys. J. D 22, 53 (2003).

    Article  ADS  Google Scholar 

  4. M. Mukherjee et al., Eur. Phys. J. A 35, 1 (2008).

    Article  ADS  Google Scholar 

  5. G. Bollen et al., Phys. Rev. Lett. 96, 152501 (2006).

    Article  ADS  Google Scholar 

  6. V.-V. Elomaa et al., Nucl. Instrum. Methods Phys. Res. A 612, 97 (2009).

    Article  ADS  Google Scholar 

  7. M. Block et al., Nature 463, 785 (2010).

    Article  ADS  Google Scholar 

  8. M. Dworschak et al., Phys. Rev. C 81, 064312 (2010).

    Article  ADS  Google Scholar 

  9. A. Kellerbauer et al., Phys. Rev. Lett. 93, 072502 (2004).

    Article  ADS  Google Scholar 

  10. M. Smith et al., Phys. Rev. Lett. 101, 202501 (2008).

    Article  ADS  Google Scholar 

  11. S. Schwarz et al., Nucl. Phys. A 693, 533 (2001).

    Article  ADS  Google Scholar 

  12. G. Bollen et al., Phys. Rev. C 46, R2140 (1992).

    Article  ADS  Google Scholar 

  13. J. Van Roosbroeck et al., Phys. Rev. Lett. 92, 112501 (2004).

    Article  ADS  Google Scholar 

  14. M. Puchalski, K. Pachucki, Phys. Rev. A 78, 052511 (2008).

    Article  ADS  Google Scholar 

  15. W. Geithner et al., Phys. Rev. Lett. 101, 252502 (2008).

    Article  ADS  Google Scholar 

  16. C. Yazidjian et al., Phys. Rev. C 76, 024308 (2007).

    Article  ADS  Google Scholar 

  17. J.C. Hardy, I.S. Towner, Phys. Rev. C 79, 055502 (2009).

    Article  ADS  Google Scholar 

  18. M. Mukherjee et al., Phys. Rev. Lett. 93, 150801 (2004).

    Article  ADS  Google Scholar 

  19. C. Weber et al., Phys. Rev. C 78, 054310 (2008).

    Article  ADS  Google Scholar 

  20. K. Langanke, M. Wiescher, Rep. Prog. Phys. 64, 1657 (2001).

    Article  ADS  Google Scholar 

  21. H. Grawe, K. Langanke, G. Martínez-Pinedo, Rep. Prog. Phys. 70, 1525 (2007).

    Article  ADS  Google Scholar 

  22. H. Schatz et al., Phys. Rep. 294, 167 (1998).

    Article  ADS  Google Scholar 

  23. C. Fröhlich et al., Phys. Rev. Lett. 96, 142502 (2006).

    Article  ADS  Google Scholar 

  24. J. Pruet et al., Astrophys. J. 644, 1028 (2006).

    Article  ADS  Google Scholar 

  25. M. Arnould, S. Goriely, K. Takahashi, Phys. Rep. 450, 97 (2007).

    Article  ADS  Google Scholar 

  26. D.G. Jenkins, Phys. Rev. C 78, 012801(R) (2008).

    Article  ADS  Google Scholar 

  27. H. Schatz, K.E. Rehm, Nucl. Phys. A 777, 601 (2006).

    Article  ADS  Google Scholar 

  28. A. Cumming et al., Astrophys. J. 646, 429 (2006).

    Article  ADS  Google Scholar 

  29. J.L. Fisker, H. Schatz, F.-K. Thielemann, Astrophys. J. Suppl. Ser. 174, 261 (2008).

    Article  ADS  Google Scholar 

  30. H. Schatz et al., Phys. Rev. Lett. 86, 3471 (2001).

    Article  ADS  Google Scholar 

  31. P. Möller, J.R. Nix, K.-L. Kratz, At. Data Nucl. Data Tables 66, 131 (1997).

    Article  ADS  Google Scholar 

  32. G. Wallerstein et al., Rev. Mod. Phys. 69, 995 (1997).

    Article  ADS  Google Scholar 

  33. H. Schatz, Int. J. Mass Spectrom. 251, 293 (2006).

    Article  ADS  Google Scholar 

  34. J.C. Wang et al., Nucl. Phys. A 746, 651c (2004).

    Article  ADS  Google Scholar 

  35. V.S. Kolhinen et al., Nucl. Instrum. Methods Phys. Res. A 528, 776 (2004).

    Article  ADS  Google Scholar 

  36. R. Ringle et al., Nucl. Instrum. Methods Phys. Res. A 604, 536 (2009).

    Article  ADS  Google Scholar 

  37. S. Rahaman et al., Int. J. Mass Spectrom. Ion Processes 251, 146 (2006).

    Google Scholar 

  38. J.A. Clark et al., Nucl. Phys. A 746, 342c (2004).

    Article  ADS  Google Scholar 

  39. J.A. Clark et al., Phys. Rev. C 75, 032801(R) (2007).

    Article  ADS  Google Scholar 

  40. P. Schury et al., Phys. Rev. C 75, 055801 (2007).

    Article  ADS  Google Scholar 

  41. J. Savory et al., Phys. Rev. Lett. 102, 132501 (2009).

    Article  ADS  Google Scholar 

  42. D. Rodríguez et al., Phys. Rev. Lett. 93, 161104 (2004).

    Article  ADS  Google Scholar 

  43. D. Rodríguez et al., Nucl. Phys. A 769, 1 (2006).

    Article  ADS  Google Scholar 

  44. A. Kellerbauer et al., Phys. Rev. C 76, 045504 (2007).

    Article  ADS  Google Scholar 

  45. G. Sikler et al., Nucl. Phys. A 763, 45 (2005).

    Article  ADS  Google Scholar 

  46. A. Kankainen et al., Eur. Phys. J. A 29, 271 (2006).

    Article  ADS  Google Scholar 

  47. M. Breitenfeldt et al., Phys. Rev. C 80, 035805 (2009).

    Article  ADS  Google Scholar 

  48. A. Martín et al., Eur. Phys. J. A 34, 341 (2007).

    Article  ADS  Google Scholar 

  49. V.-V. Elomaa et al., Phys. Rev. Lett. 102, 252501 (2009).

    Article  ADS  Google Scholar 

  50. V.-V. Elomaa et al., Eur. Phys. J. A 40, 1 (2009).

    Article  ADS  Google Scholar 

  51. E. Kugler, Hyperfine Interact. 129, 23 (2000).

    Article  ADS  Google Scholar 

  52. M. König et al., Int. J. Mass Spectrom. Ion Processes 142, 95 (1995).

    Article  ADS  Google Scholar 

  53. F. Herfurth et al., Nucl. Instrum. Methods Phys. Res. A 469, 254 (2001).

    Article  ADS  Google Scholar 

  54. H. Raimbault-Hartmann et al., Nucl. Instrum. Methods Phys. Res. B 126, 378 (1997).

    Article  Google Scholar 

  55. G. Bollen et al., Nucl. Instrum. Methods Phys. Res. A 368, 675 (1996).

    Article  ADS  Google Scholar 

  56. K. Blaum et al., Eur. Phys. J. A 15, 245 (2002).

    Article  ADS  Google Scholar 

  57. G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003).

    Article  ADS  Google Scholar 

  58. S. George et al., EPL 82, 50005 (2008).

    Article  ADS  Google Scholar 

  59. A.H. Wapstra, G. Audi, C. Thibault, Nucl. Phys. A 729, 129 (2003).

    Article  ADS  Google Scholar 

  60. M.P. Bradley et al., Phys. Rev. Lett. 83, 4510 (1999).

    Article  ADS  Google Scholar 

  61. H. Raimbault-Hartmann et al., Nucl. Phys. A 706, 3 (2002).

    Article  ADS  Google Scholar 

  62. E. Hagebø, J. Inorg. Nucl. Chem. 27, 927 (1965).

    Article  Google Scholar 

  63. G. Audi et al., Nucl. Phys. A 729, 3 (2003).

    Article  ADS  Google Scholar 

  64. G.F. Lima et al., Phys. Rev. C 65, 044618 (2002).

    Article  ADS  Google Scholar 

  65. M. Hausmann et al., Hyperfine Interact. 132, 291 (2001).

    Article  ADS  Google Scholar 

  66. J.J. LaBrecque et al., J. Inorg. Nucl. Chem. 37, 623 (1975).

    Article  Google Scholar 

  67. B.E. Tomlin et al., Phys. Rev. C 63, 034314 (2001).

    Article  ADS  Google Scholar 

  68. H. Schmeing et al., Phys. Lett. B 44, 449 (1973).

    ADS  Google Scholar 

  69. M. Chartier et al., Nucl. Phys. A 637, 3 (1998).

    Article  ADS  Google Scholar 

  70. P. Debenham, W.R. Falk, M. Canty, Can. J. Phys. 52, 1416 (1974).

    ADS  Google Scholar 

  71. M. Chartier et al., J. Phys. G 31, S1771 (2005).

    Article  Google Scholar 

  72. R.W. Hayward, D.D. Hoppes, Phys. Rev. 101, 93 (1956).

    Article  ADS  Google Scholar 

  73. Y. Tokunaga et al., Nucl. Phys. A 430, 269 (1984).

    Article  ADS  Google Scholar 

  74. H.D. Choi, Database of prompt gamma rays from slow neutron capture for elemental analysis, Tech. report, International Atomic Energy Agency (IAEA) 2007, ISBN 92-0-101306-X

  75. H.M.W. Booij et al., Nucl. Phys. A 160, 337 (1971).

    Article  ADS  Google Scholar 

  76. G. Rotbard et al., Nucl. Phys. A 401, 41 (1983).

    Article  ADS  Google Scholar 

  77. K.S. Sharma et al., Phys. Rev. C 44, 2439 (1991).

    Article  ADS  Google Scholar 

  78. E. Roeckl et al., Z. Phys. A 266, 65 (1974).

    Google Scholar 

  79. K. Heiguchi et al., Nucl. Phys. A 474, 484 (1987).

    Article  ADS  Google Scholar 

  80. D.H. Lueders et al., Phys. Rev. C 11, 1470 (1975).

    Article  ADS  Google Scholar 

  81. I.-M. Ladenbauer-Bellis, H. Bakhru, Phys. Rev. 180, 1015 (1969).

    Article  ADS  Google Scholar 

  82. S.C. Fultz, M.L. Pool, Phys. Rev. 86, 347 (1952).

    Article  ADS  Google Scholar 

  83. K.A. Baskova et al., Sov. Phys. JETP 41, 1484 (1961).

    Google Scholar 

  84. S. Ray et al., Nucl. Phys. A 138, 49 (1969).

    Article  ADS  Google Scholar 

  85. E. Haettner et al., Phys. Rev. Lett. 106, 122501 (2011).

    Article  ADS  Google Scholar 

  86. J.A. Clark et al., Phys. Rev. Lett. 92, 192501 (2004).

    Article  ADS  Google Scholar 

  87. J.A. Clark et al., Eur. Phys. J. A 25, 629 (2005).

    Article  Google Scholar 

  88. J. Fallis et al., Phys. Rev. C 78, 022801(R) (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Herfurth.

Additional information

Communicated by R. Kruecken

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herfurth, F., Audi, G., Beck, D. et al. New mass data for the rp-process above Z = 32 . Eur. Phys. J. A 47, 75 (2011). https://doi.org/10.1140/epja/i2011-11075-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2011-11075-6

Keywords

Navigation