Skip to main content

Advertisement

Log in

Precision mass measurements of neutron-rich Y, Nb, Mo, Tc, Ru, Rh, and Pd isotopes

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Direct mass measurements with typical uncertainties of 1-10keV have been performed for the first time for ten neutron-rich isotopes 102, 103Y , 108Nb , 111Mo , 113, 114Tc , 116Ru , 119Rh , and 121, 122Pd . The obtained mass data compared with the 2003 atomic-mass evaluation shows systematic overestimation of binding energies far from stability. The relationship between two-neutron separation energies, nuclear structure and shape changes has been investigated by comparing the experimental data with a theoretical calculation based on the Hartree-Fock-Bogoliubov approximation using modern energy density functionals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Blaum, Phys. Rep. 425, 1 (2006) DOI:10.1016/j.physrep.2005.10.011

    Article  ADS  Google Scholar 

  2. V.S. Kolhinen et al., Nucl. Instrum. Methods Phys. Res. A 528, 776 (2004) DOI:10.1016/j.nima.2004.05.029

    Article  ADS  Google Scholar 

  3. A. Jokinen et al., Int. J. Mass Spectrom. 251, 204 (2006) DOI:10.1016/j.ijms.2006.01.043

    Article  ADS  Google Scholar 

  4. R. Rodríguez-Guzmán et al., Phys. Lett. B 691, 202 (2010) DOI:10.1016/j.physletb.2010.06.035

    Article  ADS  Google Scholar 

  5. D. Lunney, J.M. Pearson, C. Thibault, Rev. Mod. Phys. 75, 1021 (2003) DOI:10.1103/RevModPhys.75.1021

    Article  ADS  Google Scholar 

  6. J. Dobaczewski et al., Phys. Rev. C 63, 024308 (2001) DOI:10.1103/PhysRevC.63.024308

    Article  ADS  Google Scholar 

  7. R. Rodríguez-Guzman, P. Sarriguren, L.M. Robledo, Phys. Rev. C 82, 044318 (2010) DOI:10.1103/PhysRevC.82.044318

    Article  ADS  Google Scholar 

  8. S. Naimi et al., Phys. Rev. Lett. 105, 032502 (2010) DOI:10.1103/PhysRevLett.105.032502

    Article  ADS  Google Scholar 

  9. R. Rodríguez-Guzmán et al., Phys. Rev. C 81, 024310 (2010) DOI:10.1103/PhysRevC.81.024310

    Article  ADS  Google Scholar 

  10. U. Hager et al., Phys. Rev. Lett. 96, 042504 (2006) DOI:10.1103/PhysRevLett.96.042504

    Article  ADS  Google Scholar 

  11. U. Hager et al., Phys. Rev. C 75, 064302 (2007) DOI:10.1103/PhysRevC.75.064302

    Article  ADS  Google Scholar 

  12. U. Hager et al., Nucl. Phys. A 793, 20 (2007) DOI:10.1016/j.nuclphysa.2007.06.011

    Article  ADS  Google Scholar 

  13. S. Rinta-Antila et al., Eur. Phys. J. A 31, 1 (2007) DOI:10.1140/epja/i2006-10158-9

    Article  ADS  Google Scholar 

  14. J. Äystö, Nucl. Phys. A 693, 477 (2001) DOI:10.1016/S0375-9474(01)00923-X

    Article  ADS  Google Scholar 

  15. H. Penttilä et al., Eur. Phys. J. A 25, 745 (2005) DOI:10.1140/epjad/i2005-06-141-x

    Article  Google Scholar 

  16. P. Karvonen et al., Nucl. Instrum. Methods Phys. Res. B 266, 4794 (2008) DOI:10.1016/j.nimb.2008.07.022

    Article  ADS  Google Scholar 

  17. A. Nieminen et al., Nucl. Instrum. Methods Phys. Res. A 469, 244 (2001) DOI:10.1016/S0168-9002(00)00750-6

    Article  ADS  Google Scholar 

  18. J. Pereira et al., Phys. Rev. C 79, 035806 (2009) DOI:10.1103/PhysRevC.79.035806

    Article  ADS  Google Scholar 

  19. J. Rissanen et al., Phys. Rev. C 83, 011301 (2011) DOI:10.1103/PhysRevC.83.011301

    Article  ADS  Google Scholar 

  20. F. Montes et al., Phys. Rev. C 73, 035801 (2006) DOI:10.1103/PhysRevC.73.035801

    Article  ADS  Google Scholar 

  21. D. De Frenne, Nucl. Data Sheets 110, 1745 (2009) DOI:10.1016/j.nds.2009.06.002

    Article  ADS  Google Scholar 

  22. B. Cheal et al., Phys. Lett. B 645, 133 (2007) DOI:10.1016/j.physletb.2006.12.053

    Article  ADS  Google Scholar 

  23. J.C. Hill et al., Phys. Rev. C 43, 2591 (1991) DOI:10.1103/PhysRevC.43.2591

    Article  ADS  Google Scholar 

  24. T. Mehren et al., Phys. Rev. Lett. 77, 458 (1996) DOI:10.1103/PhysRevLett.77.458

    Article  ADS  Google Scholar 

  25. H. Penttilä et al., Phys. Rev. C 54, 2760 (1996) DOI:10.1103/PhysRevC.54.2760

    Article  ADS  Google Scholar 

  26. J. Äystö et al., Phys. Rev. Lett. 69, 1167 (1992) DOI:10.1103/PhysRevLett.69.1167

    Article  ADS  Google Scholar 

  27. J. Kurpeta et al., Eur. Phys. J. A 31, 263 (2007) DOI:10.1140/epja/i2007-10009-3

    Article  ADS  Google Scholar 

  28. G. Savard et al., Phys. Lett. A 158, 247 (1991) DOI:10.1016/0375-9601(91)91008-2

    Article  ADS  Google Scholar 

  29. M. König et al., Int. J. Mass Spectrom. Ion Processes 142, 95 (1995) DOI:10.1016/0168-1176(95)04146-C

    Article  ADS  Google Scholar 

  30. G. Gräff, H. Kalinowsky, J. Traut, Z. Phys. A 297, 35 (1980) DOI:10.1007/BF01414243

    Article  ADS  Google Scholar 

  31. S. George et al., Int. J. Mass Spectrom. 264, 110 (2007) DOI:10.1016/j.ijms.2007.04.003

    Article  ADS  Google Scholar 

  32. M. Kretzschmar, Int. J. Mass Spectrom. 264, 122 (2007) DOI:10.1016/j.ijms.2007.04.002

    Article  ADS  Google Scholar 

  33. S. Rahaman et al., Eur. Phys. J. A 34, 5 (2007) DOI:10.1140/epja/i2007-10489-y

    Article  ADS  Google Scholar 

  34. S. Rahaman et al., Phys. Lett. B 662, 111 (2008) DOI:10.1016/j.physletb.2008.02.047

    Article  ADS  Google Scholar 

  35. J. Hakala et al., Phys. Rev. Lett. 101, 052502 (2008) DOI:10.1103/PhysRevLett.101.052502

    Article  ADS  Google Scholar 

  36. A. Kellerbauer et al., Eur. Phys. J. D 22, 53 (2003) DOI:10.1140/epjd/e2002-00222-0

    Article  ADS  Google Scholar 

  37. V.-V. Elomaa et al., Nucl. Instrum. Methods Phys. Res. A 612, 97 (2009) DOI:10.1016/j.nima.2009.09.002

    Article  ADS  Google Scholar 

  38. S. Nishimura et al., Phys. Rev. Lett. 106, 052502 (2011) DOI:10.1103/PhysRevLett.106.052502

    Article  ADS  Google Scholar 

  39. T. Ohnishi et al., J. Phys. Soc. Jpn. 79, 073201 (2010) DOI:10.1143/JPSJ.79.073201

    Article  ADS  Google Scholar 

  40. G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003) DOI:10.1016/j.nuclphysa.2003.11.003

    Article  ADS  Google Scholar 

  41. M. Redshaw, B.J. Mount, E.G. Myers, Phys. Rev. A 79, 012506 (2009) DOI:10.1103/PhysRevA.79.012506

    Article  ADS  Google Scholar 

  42. M. Redshaw et al., Phys. Rev. Lett. 98, 053003 (2007) DOI:10.1103/PhysRevLett.98.053003

    Article  ADS  Google Scholar 

  43. B.J. Mount, M. Redshaw, E.G. Myers, Phys. Rev. Lett. 103, 122502 (2009) DOI:10.1103/PhysRevLett.103.122502

    Article  ADS  Google Scholar 

  44. K. Balog et al., Z. Phys. A 342, 125 (1992) DOI:10.1007/BF01288459

    Article  ADS  Google Scholar 

  45. J.C. Wang et al., Phys. Lett. B 454, 1 (1999) DOI:10.1016/S0370-2693(99)00356-1

    Article  ADS  Google Scholar 

  46. L.M. Robledo, R.R. Rodríguez-Guzmán, P. Sarriguren, Phys. Rev. C 78, 034314 (2008) DOI:10.1103/PhysRevC.78.034314

    Article  ADS  Google Scholar 

  47. R. Fossion et al., Nucl. Phys. A 697, 703 (2002) DOI:10.1016/S0375-9474(01)01270-2

    Article  ADS  Google Scholar 

  48. M. Bender, G.F. Bertsch, P.H. Heenen, Phys. Rev. C 78, 054312 (2008) DOI:10.1103/PhysRevC.78.054312

    Article  ADS  Google Scholar 

  49. J.E. García-Ramos et al., Eur. Phys. J. A 26, 221 (2005) DOI:10.1140/epja/i2005-10176-1

    Article  ADS  Google Scholar 

  50. P. Campbell et al., Phys. Rev. Lett. 89, 082501 (2002) DOI:10.1103/PhysRevLett.89.082501

    Article  ADS  Google Scholar 

  51. F. Charlwood et al., Phys. Lett. B 674, 23 (2009) DOI:10.1016/j.physletb.2009.02.050

    Article  ADS  Google Scholar 

  52. C.F. von Weizsäcker, Z. Phys. 96, 431 (1935) DOI:10.1007/BF01337700

    Article  MATH  Google Scholar 

  53. H.A. Bethe, R.F. Bacher, Rev. Mod. Phys. 8, 82 (1936) DOI:10.1103/RevModPhys.8.82

    Article  ADS  MATH  Google Scholar 

  54. M. Breitenfeldt et al., Phys. Rev. C 81, 034313 (2010) DOI:10.1103/PhysRevC.81.034313

    Article  ADS  Google Scholar 

  55. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, Berlin-Heidelberg-New York, 1980).

  56. J.F. Berger, M. Girod, D. Gogny, Nucl. Phys. A 428, 23 (1984) DOI:10.1016/0375-9474(84)90240-9

    Article  ADS  Google Scholar 

  57. L.M. Robledo, R. Rodríguez-Guzmán, P. Sarriguren, J. Phys. G 36, 115104 (2009) DOI:10.1088/0954-3899/36/11/115104

    Article  ADS  Google Scholar 

  58. F. Chappert, M. Girod, S. Hilaire, Phys. Lett. B 668, 420 (2008) DOI:10.1016/j.physletb.2008.09.017

    Article  ADS  Google Scholar 

  59. J. Dechargé, D. Gogny, Phys. Rev. C 21, 1568 (1980) DOI:10.1103/PhysRevC.21.1568

    Article  ADS  Google Scholar 

  60. F. Buchinger et al., Phys. Rev. C 41, 2883 (1990) DOI:10.1103/PhysRevC.41.2883

    Article  ADS  Google Scholar 

  61. J.-P. Delaroche et al., Phys. Rev. C 81, 014303 (2010) DOI:10.1103/PhysRevC.81.014303

    Article  ADS  Google Scholar 

  62. T. Nikšić et al., Phys. Rev. C 79, 034303 (2009) DOI:10.1103/PhysRevC.79.034303

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hakala.

Additional information

Communicated by R. Krücken

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hakala, J., Rodríguez-Guzmán, R., Elomaa, V.V. et al. Precision mass measurements of neutron-rich Y, Nb, Mo, Tc, Ru, Rh, and Pd isotopes. Eur. Phys. J. A 47, 129 (2011). https://doi.org/10.1140/epja/i2011-11129-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2011-11129-9

Keywords

Navigation