Skip to main content
Log in

A study of reaction rates of (n, f ) , (n,\( \gamma\)) and (n, 2n) reactions in natU and 232Th by the neutron fluence produced in the graphite set-up (GAMMA-3) irradiated by 2.33 GeV deuteron beam

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Spallation neutrons produced in the collision of a 2.33GeV deuteron beam with a large lead target are moderated by a thick graphite block surrounding the target and used to activate the radioactive samples of natU and Th put at three different positions, identified as holes “a”, “b” and “c” in the graphite block. Rates of the (n, f), (n, \( \gamma\) and (n, 2n) reactions in the two samples are determined using the gamma spectrometry. The ratios of the experimental reaction rates, R (n, 2n)/R (n, f), for 232Th and natU are estimated in order to understand the role of the (n, x n) kind of reactions in Accelerator-Driven Sub-critical Systems. For the Th-sample, the ratio is ∼ 54 (10)% in the case of hole “a” and ∼ 95 (57)% in the case of hole “b” compared to 1.73(20)% for hole “a” and 0.710(9)% for hole “b” in the case of the natU sample. Also the ratio of fission rates in uranium to thorium, natU (n, f)/ 232Th (n, f), is ∼ 11.2 (17) in the case of hole “a” and 26.8(85) in hole “b”. Similarly, the ratio 238U (n, 2n)/ 232Th (n, 2n) is 0.36(4) for hole “a” and 0.20(10) for hole “b” showing that 232Th is more prone to the (n, x n) reaction than 238U . All the experimental reaction rates are compared with the simulated ones by generating neutron fluxes at the three holes from MCNPX 2.6c and making use of the LA150 library of cross-sections. The experimental and calculated reaction rates of all the three reactions are in reasonably good agreement. The transmutation power, P norm as well as P norm/P beam of the set-up is estimated using the reaction rates of the (n, \( \gamma\) and (n, 2n) reactions for both the samples in the three holes and compared with some of the results of the “Energy plus Transmutation” set-up and TARC experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C.D. Bowman et al., Nucl. Instrum. Methods A 320, 336 (1992)

    Article  ADS  Google Scholar 

  2. A.J. Janssen, Transmutation of Fission Products in Reactors and Accelerator-Driven Systems, ECN-R-94-001 (1994)

  3. C. Rubbia, J.A. Rubio, Conceptual design of a fast neutron operated high power energy amplifier, CERN/AT/95-44 (ET), (1995). See also C. Rubbia, A high gain energy amplifier operated with fast neutrons, Proceedings of the International Conference on Accelerator-Driven Transmutation Technologies and Applications, Las Vegas (NV) 1994, AIP Conf. Proc., vol. 346 (AIP Publishing, 1994)

  4. F. Sokolov, K. Fukuda, H.P. Nawada, Thorium fuel cycle - Potential benefits and challenges, IAEA-TECDOC-1450 (2005)

  5. Experimental Nuclear Reaction Data, http://www-nds.iaea.org/various1.htm,www-nds.iaea.org/,www.nndc.bnl.gov/

  6. J.S. Hendricks, MCNPX, version 2.6.c, LA-UR-06-7991 (2006)

  7. A. Fasso, A. Ferrari, J. Ranft, P.R. Sala, FLUKA: present status and future developments, in Proceedings of the IV International Conference on Calorimetry in High Energy Physics, La Biodola (Italy) 21-26 September (1993), edited by A. Menzione, A. Scribano (World Scientific, 1994) pp. 493-502

  8. V.S. Barashenkov, Comput. Phys. Commun. 126, 28 (2000)

    Article  ADS  MATH  Google Scholar 

  9. C.H.M. Broeders, FZK 7183 (2006)

  10. A.J. Koning, in Proceedings of the International Conference on Nuclear Data for Science and Technology, Santa Fe, USA, Sept. 26 -- Oct. 1 (2004) and www.talys.eu

  11. Y.A. Korovin et al., Nucl. Instrum. Methods A 562, 721 (2006)

    Article  ADS  Google Scholar 

  12. G.N. Kim et al., Nucl. Instrum. Methods A 485, 458 (2002)

    Article  ADS  Google Scholar 

  13. G. Tagliente, n-TOF Collaboration, Braz. J. Phys. 34, 1033 (2004)

    Article  Google Scholar 

  14. A.K. Krasnykh, V.L. Lomidze, A.V. Novokhatsky, Yu.P. Popov, W.I. Furman (Editors), IREN Project. Intense Resonance Neutron Source, Frank Laboratory of Neutron Physics, JINR, Dubna (1994)

  15. H.A. Abderrahim, P. Baeten et al., Nucl. Phys. News 20, 24 (2010)

    Article  Google Scholar 

  16. V. Shvetsov et al., Nucl. Instrum. Methods Phys. Res. A 562, 886 (2006)

    Article  ADS  Google Scholar 

  17. V.S. Barashenkov, H. Kumawat, V.A. Lobanova, V. Kumar, Nucl. Instrum. Methods Phys. Res. B 217, 352 (2004)

    Article  ADS  Google Scholar 

  18. B. Blau et al., Neutron News 20, 5 (2009)

    Article  Google Scholar 

  19. Shinichi Sakamoto et al., Nucl. Instrum. Methods Phys. Res. A 562, 638 (2006)

    Article  ADS  Google Scholar 

  20. T. Ino et al., Nucl. Instrum. Methods A 525, 496 (2004)

    Article  ADS  Google Scholar 

  21. E. Kim et al., Nucl. Sci. Eng. 129, 209 (1998)

    Google Scholar 

  22. A. Abanades et al., Nucl. Instrum. Methods A 478, 577 (2002)

    Article  ADS  Google Scholar 

  23. J. Adam et al., Eur. Phys. J. A 43, 159 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  24. J. Adam, V.S. Barashenkov, H. Kumawat, V. Kumar et al., Kerntechnik 70, 127 (2005)

    Google Scholar 

  25. J. Adam, V.S. Barashenkov, H. Kumawat, V. Kumar et al., Euro. Phys. J. A 23, 61 (2005)

    Article  ADS  Google Scholar 

  26. Yu.E. Titarenko et al., Phys. Rev. C 65, 064610 (2002)

    Article  ADS  Google Scholar 

  27. Yu.E. Titarenko et al., Phys. Rev. C 78, 034615 (2008)

    Article  ADS  Google Scholar 

  28. V. Kumar, Chitra Bhatia, H. Kumawat, CASCADE data for the A.D.S materials for its Benchmarking, in PSI Proceedings 09-01, 30 (2009)

  29. V. Kumar, Chitra Bhatia, H. Kumawat, J. Adam, Eur. Phys. J. A 40, 231 (2009)

    Article  ADS  Google Scholar 

  30. Manish Sharma, V. Kumar et al., Pramana J. Phys. 68, 307 (2007)

    Article  ADS  Google Scholar 

  31. J. Banaigs, J. Berger, J. Dulfo, L. Goldzahl et al., Nucl. Instrum. Methods 95, 307 (1971)

    Article  ADS  Google Scholar 

  32. J. Frana, J. Radioanal. Nucl. Chem. 257, 583 (2003)

    Article  Google Scholar 

  33. S.Y.F. Chu, L.P. Ekstrom, R.B. Firestone, http://nucleardata.nuclear.lu.se

  34. The JEFF-3.1 Nuclear Data Library, JEFF report 21, edited by A. Koning, Organisation for Economic Co-operation and Development, Nuclear Energy Agency, Paris, 2006

  35. J. Adam, A. Balabekyan, V.S. Pronskikh et al., Appl. Rad. Isotopes 56, 607 (2002)

    Article  Google Scholar 

  36. V. Kumar, H. Kumawat, Chitra Bhatia, Probl. At. Sci. Technol. 4, 80 (2009)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Kumar.

Additional information

Communicated by R. Krücken

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adam, J., Bhatia, C., Katovsky, K. et al. A study of reaction rates of (n, f ) , (n,\( \gamma\)) and (n, 2n) reactions in natU and 232Th by the neutron fluence produced in the graphite set-up (GAMMA-3) irradiated by 2.33 GeV deuteron beam. Eur. Phys. J. A 47, 85 (2011). https://doi.org/10.1140/epja/i2011-11085-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2011-11085-4

Keywords

Navigation