Skip to main content
Log in

A study of nuclear transmutation of Th and natU with neutrons produced in a Pb target and U blanket irradiated by 1.6 GeV deuterons

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The spallation lead target in the “Energy plus Transmutation” set-up, covered with uranium blanket, was irradiated by the 1.6GeV deuteron beam from the Nuclotron accelerator at the Joint Institute for Nuclear Research in Dubna. The neutrons generated in the subcritical uranium blanket are used to activate the radioactive uranium and thorium samples outside the blanket. Rates of the (n,\( \gamma\)) , (n, f) and (n, 2n) reactions are determined for some residual nuclei. The ratio of the reaction rates R(n, 2n)/R(n, f) is estimated to be 27(9)%. Contributions of the neutrons with energy E n > 20 MeV to the (n, f) reaction rate is ∼ 57% for 232Th and ∼ 37% for natU , respectively. To compare with the experimental results, the reaction rates are simulated by generating the neutron fluxes employing two different models, the beam shapes by the MCNPX 2.6.c code and making use of the appropriate libraries of cross-sections. The transmutation power of the set-up is estimated using the average (n,\( \gamma\)) and (n, 2n) reaction rates and compared with some of the results of the TARC experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C.D. Bowman et al., Nucl. Instrum. Methods A 320, 336 (1992)

    Article  ADS  Google Scholar 

  2. Carlo Rubbia, J.A. Rubio, Conceptual design of a fast neutron operated high power energy amplifier, CERN/AT/95-44 (ET) 1995

  3. C. Rubbia, A high gain energy amplifier operated with fast neutrons, in Proceedings of the International Conference on Accelerator-Driven Transmutation Technologies and Applications, Las Vegas (NV), US, 1994, AIP Conf. Proc. 346, 44 (1995)

  4. A.J. Janssen, Transmutation of fission products in reactors and accelerator-driven systems, ECN-R-94-001 (January 2004)

  5. A.J. Koning et al., Nucl. Instrum. Methods: Phys. Res. A 414, 49 (1998)

    Article  Google Scholar 

  6. V.P. Bhatnagar, S. Casalta, M. Hugon, Nuclear waste partitioning and transmutation in the EURATOM fifth and sixth framework, talk presented at Seventh Information Exchange Meeting on Actinides and Fission Product Partitioning and Transmutation, 14-16 Oct. 2002, Jeju, Korea

  7. H. Nifenecker, O. Meplan, S. David, Accelerator Driven Sub-critical Reactors (Institute of Physics Publishing, Bristol and Philadelphia, 2003)

  8. U. Abbondanno, in Proceedings of the International Conference on Nuclear Data for Science and Technology, Santa Fe, New Mexico (USA), 26 September - 1 October 2004, AIP Conf. Proc. 769, 724 (2005)

  9. A. Abanades, J. Aleixandre, S. Andriamonje et al., Nucl. Instrum. Methods: Phys. Res. A 478, 577 (2002)

    Article  ADS  Google Scholar 

  10. M.I. Krivopustov, D. Chultem, J. Adam et al., Kerntechnik 68, 48 (2003)

    Google Scholar 

  11. V.S. Barashenkov, H. Kumawat, V.A. Lobanova, V. Kumar, Nucl. Instrum. Methods: Phys. Res. B 217, 352 (2004)

    Article  ADS  Google Scholar 

  12. J.-S. Wan, M. Ochs, P. Vater et al., Nucl. Instrum. Methods: Phys. Res. B 155, 110 (1999)

    Article  ADS  Google Scholar 

  13. J. Banaigs, J. Berger, J. Dulfo, L. Goldzahl et al., Nucl. Instrum. Methods 95, 307 (1971)

    Article  ADS  Google Scholar 

  14. P. Kozma, V.V. Yanovsky, Czech. J. Phys. 40, 393 (1990)

    Article  ADS  Google Scholar 

  15. J. Blocki, J. Randrup, W.J. Swiatecki, C.F. Tsang, Ann. Phys. (N.Y.) 105, 427 (1977)

    Article  ADS  Google Scholar 

  16. G.L. Morgan, K.R. Alrick, A. Saunders, F.C. Cverna et al., Nucl. Instrum. Methods: Phys. Res. B 211, 297 (2003)

    Article  ADS  Google Scholar 

  17. S.R. Hashemi-Nezhad, Igor Zhuk, M. Kievets et al., Nucl. Instrum. Methods: Phys. Res. A 591, 517 (2008)

    Article  ADS  Google Scholar 

  18. Mitja Majerle, V. Wagner, A. Krasa, J. Adam et al., Nucl. Instrum. Methods: Phys. Res. A 580, 110 (2007)

    Article  ADS  Google Scholar 

  19. J. Frana, J. Radioanal. Nucl. Chem. 257, 583 (2003)

    Article  Google Scholar 

  20. J. Adam, V.S. Pronskikh, A. Balabekyan, Preprint JINR, P10-2000-28, Dubna

  21. J. Adam, A. Balabekyan, V.S. Pronskikh et al., Appl. Radiat. Isotopes 56, 607 (2002)

    Article  Google Scholar 

  22. S.Y.F. Chu, L.P. Ekstrom, R.B. Firestone, http:// nucleardata.nuclear.lu.se

  23. J.S. Hendricks, MCNPX, version 2.6.c, LA-UR-06-7991 (2006)

  24. S.G. Mashnik et al., J. Phys. Conf. Ser. 41, 340 (2006)

    Article  ADS  Google Scholar 

  25. A. Boudard, J. Cugnon, S. Leray, C. Volant, Phys. Rev. C 66, 044615 (2002)

    Article  ADS  Google Scholar 

  26. A.R. Junghans, M. de Jong, H.G. Clerc, A.V. Ignatyuk, G.A. Kudyaev, K.H. Schmidt, Nucl. Phys. A 629, 635 (1998)

    Article  ADS  Google Scholar 

  27. J. Benlliure, A. Grewe, M. de Jong, K.H. Schmidt, S. Zhdanov, Nucl. Phys. A 628, 458 (1998)

    Article  ADS  Google Scholar 

  28. Experimental Nuclear Reaction Data (EXFOR) IAEA-NDS 2008

  29. A.J. Koning, in Proceedings of the International Conference on Nuclear Data for Science and Technology, Santa Fe, New Mexico, USA, 26 September - 1 October 2004, AIP Conf. Proc. 769, 1154 (2005)

  30. A. Koning, S. Hilaire, M. Duijvestijn, www.talys.eu

  31. O.I. Batenkov, Comparison of measured and calculated mass distributions of fission fragments in proton--induced fission of 232Th, 235U, 238U and 237Np at intermediate energies, in Proceedings of the International Conference on Nuclear Data for Science and Technology, Santa Fe, New Mexico, USA, 26 September - 1 October 2004, AIP Conf. Proc. 769, 625 (2005)

  32. T. Ohtsuki et al., Phys. Rev. C 44, 1405 (1991)

    Article  ADS  Google Scholar 

  33. V. Kumar, H. Kumawat, Chitra Bhatia, A study of ADS materials using the CASCADE code, IAEA Technical Meeting TM34567 on the Accelerator Simulation and Theoretical Modeling of Radiation Effects (SMoRE), Kharkov, Ukraine, June 9-13, 2008, http://www-naweb.iaea.org/ napc/physics/meetings/TM34567/login2.html

  34. E. Storm, H. Izrael, Nucl. Data Tables A 7, 563 (1970)

    Article  ADS  Google Scholar 

  35. W.J. Veigele, At. Data Tables 5, 51 (1973)

    Article  ADS  Google Scholar 

  36. J.H. Hubbell, Int. J. Appl. Radiat. Isotopes 33, 1269 (1982)

    Article  Google Scholar 

  37. K. Katovsky, PhD Thesis, CTU Prague, 2008

  38. Y. Yoshizawa et al., Nucl. Instrum. Methods 174, 109 (1980)

    Article  ADS  Google Scholar 

  39. K. Debertin, U. Schotzig, Nucl. Instrum. Methods 158, 471 (1979)

    Article  ADS  Google Scholar 

  40. U. Schotzig, K. Debertin, K.F. Walz, Int. J. Appl. Radiat. Isotopes 28, 503 (1977)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Adam.

Additional information

Communicated by R. Krücken

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adam, J., Katovsky, K., Majerle, M. et al. A study of nuclear transmutation of Th and natU with neutrons produced in a Pb target and U blanket irradiated by 1.6 GeV deuterons. Eur. Phys. J. A 43, 159–173 (2010). https://doi.org/10.1140/epja/i2010-10909-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2010-10909-y

Keywords

Navigation