Skip to main content
Log in

High-spin excitations of 81, 82, 83, 85Se : Competing single-particle and collective structures around N = 50

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The 81, 82, 83, 85Se nuclei have been produced as fission fragments in the fusion reaction 18O + 208Pb at 85MeV bombarding energy and studied with the Euroball IV array. Their high-spin level schemes have been built from the triple \( \gamma\) -ray coincidence data and \( \gamma\) -\( \gamma\) angular correlations have been analyzed in order to assign spin and parity values to many observed states. The lowest-spin states of the two-neutron and three-neutron configurations are strongly mixed with two-proton excitations among the fp orbits. On the other hand, the highest-spin states of these neutron configurations are found to remain almost pure. Neutron excitation across the N = 50 gap is observed both in 83Se49 and in 85Se51 .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Otsuka, Phys. Rev. Lett. 87, 082502 (2001).

    Google Scholar 

  2. T. Otsuka, T. Suzuki, R. Fujimoto, H. Grawe, Y. Akaishi, Phys. Rev. Lett. 95, 232502 (2005).

    Google Scholar 

  3. T. Otsuka, T. Matsuo, D. Abe, Phys. Rev. Lett. 97, 162501 (2006).

    Google Scholar 

  4. O. Sorlin, M.-G. Porquet, Prog. Part. Nucl. Phys. 61, 602 (2008) arXiv 0805.2561 [nucl-ex].

  5. B. Bastin, Phys. Rev. Lett. 99, 022503 (2007).

    Google Scholar 

  6. M.-G. Porquet, Proceedings of the Second International Workshop on Nuclear Fission and Fission-product Spectroscopy, Seyssins, France, 1998, AIP Conf. Proc. 447, 212 (1998).

  7. M.-G. Porquet, Proceedings of the Second International Conference on Fission and Properties of Neutron-Rich Nuclei, St Andrews, Scotland, 1999 (World Scientific, 2000).

  8. A. Prévost, Eur. Phys. J. A 22, 391 (2004).

    Google Scholar 

  9. M.-G. Porquet, Eur. Phys. J. A 28, 153 (2006).

    Google Scholar 

  10. A. Astier, Eur. Phys. J. A 30, 541 (2006).

    Google Scholar 

  11. J. Simpson, Z. Phys. A 358, 139 (1997)

    Google Scholar 

  12. J. Eberth, Nucl. Instrum. Methods A 369, 135 (1996).

    Google Scholar 

  13. G. Duchêne, Nucl. Instrum. Methods A 432, 90 (1999).

    Google Scholar 

  14. D. Radford, Nucl. Instrum. Methods A 361, 297 and 306 (1995).

  15. M.A.C. Hotchkis, Nucl. Phys. A 530, 111 (1991).

    Google Scholar 

  16. M.G. Porquet, Acta Phys. Pol. B 27, 179 (1996).

    Google Scholar 

  17. M.G. Porquet, Int. J. Mod. Phys. E 13, 29 (2004).

    Google Scholar 

  18. ENSDF data base, http://www.nndc.bnl.gov/ensdf/.

  19. Ts. Venkova, Eur. Phys. J. A 34, 349 (2007).

  20. P. Kemnitz, Nucl. Phys. A 456, 89 (1986).

    Google Scholar 

  21. A. Makishima, Phys. Rev. C 59, R2331 (1999).

  22. G.A. Jones, Phys. Rev. C 76, 054317 (2007).

    Google Scholar 

  23. H. Gausemel, Phys. Rev. C 70, 037301 (2004).

    Google Scholar 

  24. A. Astier, in preparation.

  25. R.A. Meyer, O.G. Lien, E.A. Henry, Phys. Rev. C 25, 682 (1982).

    Google Scholar 

  26. R. Lucas, Eur. Phys. J. A 15, 315 (2002).

    Google Scholar 

  27. N. Fotiades, Phys. Rev. C 74, 034308 (2006).

    Google Scholar 

  28. J.P. Omtvedt, B. Fogelberg, P. Hoff, Z. Phys. A 339, 349 (1991).

    Google Scholar 

  29. J.S. Thomas, Phys. Rev. C 76, 044302 (2007).

    Google Scholar 

  30. G. de Angelis, Nucl. Phys. A 787, 74c (2007).

  31. Y.H. Zhang, Phys. Rev. C 70, 024301 (2004).

    Google Scholar 

  32. T. Rzaca-Urban, W. Urban, J.L. Durell, A.G. Smith, I. Ahmad, Phys. Rev. C 76, 027302 (2007).

    Google Scholar 

  33. X. Ji, B.H. Wildenthal, Phys. Rev. C 37, 1256 (1988).

    Google Scholar 

  34. X. Ji, B.H. Wildenthal, Phys. Rev. C 40, 389 (1988).

    Google Scholar 

  35. A.F. Lisetskiy, B.A. Brown, M. Horoi, H. Grawe, Phys. Rev. C 70, 044314 (2004).

    Google Scholar 

  36. D. Verney, Phys. Rev. C 76, 054312 (2007).

    Google Scholar 

  37. C. Mazzocchi, Phys. Lett. B 622, 45 (2005).

    Google Scholar 

  38. J.-M. Daugas, Phys. Lett. B 476, 213 (2000).

    Google Scholar 

  39. V. Paar, Nucl. Phys. A 211, 29 (1973).

    Google Scholar 

  40. I. Talmi, Simple Models of Complex Nuclei (Harwood Academic Publishers, 1993) Chapts. 16 and 31.

  41. R. Gross, A. Frenkel, Nucl. Phys. A 267, 85 (1976).

    Google Scholar 

  42. F.J.D. Serduke, R.D. Lawson, D.H. Gloeckner, Nucl. Phys. A 256, 45 (1976).

    Google Scholar 

  43. G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. -G. Porquet.

Additional information

C. Signorini

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porquet, M.G., Astier, A., Venkova, T. et al. High-spin excitations of 81, 82, 83, 85Se : Competing single-particle and collective structures around N = 50. Eur. Phys. J. A 39, 295–306 (2009). https://doi.org/10.1140/epja/i2008-10723-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2008-10723-2

PACS

Navigation