Skip to main content

Advertisement

Log in

Light-ion-induced reactions in mass measurements of neutron-deficient nuclides close to A = 100

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

A survey of neutron-deficient nuclides which can be produced via proton- and 3He -induced fusion-evaporation reactions in the A = 100 region was made using a Penning trap as a high-resolution mass filter. A comparison of the measured isotopic rates with a statistical model calculation for the proton-induced reactions shows the importance of using the precise binding energy values for the final reaction products. In particular, proton separation energies were found to play an important role in the evaporation process. In addition, accurate masses of 12 nuclides, 97-99, 101Pd , 100Ag , 101-105Cd and 102, 104In , were determined with uncertainties of less than 10keV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Schatz, Phys. Rep. 294, 167 (1998).

  2. C. Fröhlich, Phys. Rev. Lett. 96, 142502 (2006).

    Google Scholar 

  3. J.A. Clark, Phys. Rev. C 75, 032801(R) (2007).

    Google Scholar 

  4. P. Schury, Phys. Rev. C 75, 055801 (2007).

    Google Scholar 

  5. J.A. Clark, Phys. Rev. Lett. 92, 192501 (2004).

    Google Scholar 

  6. D. Rodriguez, Nucl. Phys. A 769, 1 (2006).

    Google Scholar 

  7. G. Sikler, Nucl. Phys. A 763, 45 (2005).

    Google Scholar 

  8. T. Otto, Nucl. Phys. A 567, 281 (1994).

    Google Scholar 

  9. A. Kankainen, Eur. Phys. J. A 29, 271 (2006).

    Google Scholar 

  10. A. Jokinen, Int. J. Mass Spectrom. 251, 204 (2006).

    Google Scholar 

  11. C. Weber, Phys. Rev. C 78, 054310 (2008).

    Google Scholar 

  12. V.S. Kolhinen, Nucl. Instrum. Methods A 528, 776 (2004).

  13. J. Äystö, Nucl. Phys. A 693, 477 (2001).

    Google Scholar 

  14. P. Karvonen, I.D. Moore, Nucl. Instrum. Methods B 266, 4794 (2008).

    Google Scholar 

  15. A. Nieminen, Nucl. Instrum. Methods A 469, 244 (2001).

    Google Scholar 

  16. G. Savard, Phys. Lett. A 158, 247 (1991).

    Google Scholar 

  17. G. Gräff, H. Kalinowsky, J. Traut, Z. Phys. A 297, 35 (1980).

    Google Scholar 

  18. M. König, Int. J. Mass Spectrom. Ion Process. 142, 95 (1995).

  19. S. Rahaman, Eur. Phys. J. ST 150, 349 (2007).

    Google Scholar 

  20. V.A. Rubchenya, Phys. Rev. C 75, 054601 (2007).

    Google Scholar 

  21. G. Audi, O. Bersillon, J. Blachot, A.H. Wapstra, Nucl. Phys. A 729, 3 (2003).

    Google Scholar 

  22. G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003).

    Google Scholar 

  23. A. Mart\`in, Eur. Phys. J. A 34, 341 (2007).

    Google Scholar 

  24. H. Göktürk, Nucl. Phys. A 344, 1 (1980).

    Google Scholar 

  25. C.E. Thorn, Phys. Rev. C 25, 331 (1982).

    Google Scholar 

  26. M.E. Phelps, Nucl. Phys. A 135, 116 (1969).

    Google Scholar 

  27. N. Ibrahiem, H. Petterson, Phys. Scr. 4, 161 (1972).

    Google Scholar 

  28. J.S. Evans, Phys. Rev. 138, B9 (1965).

  29. Yu.A. Litvinov, Nucl. Phys. A 756, 3 (2005).

    Google Scholar 

  30. H.I. Hayakawa, Phys. Rev. C 22, 247 (1980).

    Google Scholar 

  31. S. Rastikerdar, J. Phys. G: Nucl. Phys. 9, 555 (1983).

    Google Scholar 

  32. K. Rykaczewski, Z. Phys. A 332, 275 (1989).

    Google Scholar 

  33. A.H. Wapstra, G. Audi, C. Thibault, Nucl. Phys. A 729, 129 (1993).

    Google Scholar 

  34. H. Keller, Z. Phys. A 339, 355 (1991).

    Google Scholar 

  35. V.R. Bom, Z. Phys. A 331, 21 (1988).

    Google Scholar 

  36. G. Lhersonneau, Phys. Rev. C 18, 2688 (1978).

    Google Scholar 

  37. R.C. Pardo, Phys. Rev. C 18, 1249 (1978).

    Google Scholar 

  38. G.M. Crawley, Phys. Lett. B 109, 8 (1982).

    Google Scholar 

  39. R.A. Dewberry, Phys. Rev. C 27, 892 (1983).

    Google Scholar 

  40. G. Rotbard, Bull. Am. Phys. Soc. 29, 1041 (1984).

    Google Scholar 

  41. V.R. Bom, Z. Phys. A 325, 149 (1986).

    Google Scholar 

  42. R. Chapman, J. Phys. G: Nucl. Phys. 1, 657 (1975).

  43. M. Gierlik, Nucl. Phys. A 724, 313 (2003).

    Google Scholar 

  44. M. Karny, GSI Sci. Rep. 1, 22 (1998).

  45. J. Szerypo, Nucl. Phys. A 584, 221 (1995).

    Google Scholar 

  46. J.M. Wouters, Phys. Rev. C 27, 1745 (1983).

    Google Scholar 

  47. H. Huang, Can. J. Phys. 56, 936 (1978).

    Google Scholar 

  48. K.S. Sharma, Phys. Rev. C 44, 2439 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. -V. Elomaa.

Additional information

N. Alamanos

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elomaa, V.V., Eronen, T., Hager, U. et al. Light-ion-induced reactions in mass measurements of neutron-deficient nuclides close to A = 100. Eur. Phys. J. A 40, 1–9 (2009). https://doi.org/10.1140/epja/i2008-10732-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2008-10732-1

PACS

Navigation