Skip to main content
Log in

Universal properties and structure of halo nuclei

  • Regular Article — Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The universal properties and structure of halo nuclei composed of two neutrons (2n) and a core are investigated within an effective quantum mechanics framework. We construct an effective interaction potential that exploits the separation of scales in halo nuclei and treat the nucleus as an effective three-body system. The uncertainty from higher orders in the expansion is quantified through theoretical error bands. First, we investigate the possibility to observe excited Efimov states in 2n halo nuclei. Based on the experimental data, 20C is the only halo nucleus candidate to possibly have an Efimov excited state, with an energy less than 7 keV below the scattering threshold. Second, we study the structure of 20C and other 2n halo nuclei. In particular, we calculate their matter form factors, radii, and two-neutron opening angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Braaten, H.-W. Hammer, Phys. Rep. 428, 259 (2006) [arXiv:cond-mat/0410417].

    Article  ADS  MathSciNet  Google Scholar 

  2. P.F. Bedaque, H.-W. Hammer, U. van Kolck, Phys. Rev. Lett. 82, 463 (1999) [arXiv:nucl-th/9809025]; Nucl. Phys. A 646, 444 (1999) [arXiv:nucl-th/9811046].

    Article  ADS  Google Scholar 

  3. V. Efimov, Phys. Lett. B 33, 563 (1970).

    Article  ADS  Google Scholar 

  4. P.F. Bedaque, U. van Kolck, Annu. Rev. Nucl. Part. Sci. 52, 339 (2002) [arXiv:nucl-th/0203055].

    Article  ADS  Google Scholar 

  5. P.F. Bedaque, G. Rupak, H.W. Griesshammer, H.-W. Hammer, Nucl. Phys. A 714, 589 (2003) [arXiv:nuclth/0207034].

    Article  MATH  ADS  Google Scholar 

  6. L. Platter, H.-W. Hammer, U.-G. Meißner, Phys. Lett. B 607, 254 (2005) [arXiv:nucl-th/0409040].

    Article  ADS  Google Scholar 

  7. K. Riisager, Rev. Mod. Phys. 66, 1105 (1994).

    Article  ADS  Google Scholar 

  8. M.V. Zhukov, B.V. Danilin, D.V. Fedorov, J.M. Bang, I.J. Thompson, J.S. Vaagen, Phys. Rep. 231, 151 (1993).

    Article  ADS  Google Scholar 

  9. P.G. Hansen, A.S. Jensen, B. Jonson, Annu. Rev. Nucl. Part. Sci. 45, 591 (1995).

    Article  ADS  Google Scholar 

  10. I. Tanihata, J. Phys. G 22, 157 (1996).

    Article  ADS  Google Scholar 

  11. A.S. Jensen, K. Riisager, D.V. Fedorov, E. Garrido, Rev. Mod. Phys. 76, 215 (2004).

    Article  ADS  Google Scholar 

  12. C.A. Bertulani, H.-W. Hammer, U. Van Kolck, Nucl. Phys. A 712, 37 (2002) [arXiv:nucl-th/0205063].

    Article  ADS  Google Scholar 

  13. P.F. Bedaque, H.-W. Hammer, U. van Kolck, Phys. Lett. B 569, 159 (2003) [arXiv:nucl-th/0304007].

    Article  MATH  ADS  Google Scholar 

  14. C.A. Bertulani, R. Higa, U. van Kolck, in preparation.

  15. R. Higa, H.-W. Hammer, U. van Kolck, Nucl. Phys. A (in press) [arXiv:0802.3426 [nucl-th]].

  16. H.-W. Hammer, R. Higa, Eur. Phys. J. A 37, 193 (2008) [arXiv:0804.4643 [nucl-th]].

    Article  Google Scholar 

  17. T. Kraemer et al., Nature 440, 315 (2006) [arXiv:condmat/0512394v2].

    Article  ADS  Google Scholar 

  18. D.V. Fedorov, A.S. Jensen, K. Riisager, Phys. Rev. Lett. 73, 2817 (1994) [arXiv:nucl-th/9409018].

    Article  ADS  Google Scholar 

  19. A.E.A. Amorim, T. Frederico, L. Tomio, Phys. Rev. C 56, R2378 (1997) [arXiv:nucl-th/9708023].

    Article  ADS  Google Scholar 

  20. I. Mazumdar, V. Arora, V.S. Bhasin, Phys. Rev. C 61, R051303 (2000).

    Article  ADS  Google Scholar 

  21. L. Platter, H.-W. Hammer, U.-G. Meißner, Phys. Rev. A 70, 052101 (2004) [arXiv:cond-mat/0404313].

    Article  ADS  Google Scholar 

  22. L. Platter, H.-W. Hammer, U.-G. Meißner, Few Body Syst. 35, 169 (2004) [arXiv:cond-mat/0405660].

    ADS  Google Scholar 

  23. V.F. Kharchenko, Sov. J. Nucl. Phys. 16, 173 (1973) [Yad. Fiz. 16, 310 (1972)].

    Google Scholar 

  24. V. Efimov, Comments Nucl. Part. Phys. 19, 271 (1990).

    Google Scholar 

  25. L.H. Thomas, Phys. Rev. 47, 903 (1935).

    Article  MATH  ADS  Google Scholar 

  26. S.K. Adhikari, A. Delfino, T. Frederico, I.D. Goldman, L. Tomio, Phys. Rev. A 37, 3666 (1988).

    Article  ADS  Google Scholar 

  27. F. Robicheaux, Phys. Rev. A 60, 1706 (1999).

    Article  ADS  Google Scholar 

  28. M.T. Yamashita, T. Frederico, M.S. Hussein, Mod. Phys. Lett. A 21, 1749 (2006) [arXiv:nucl-th/0501052].

    Article  ADS  Google Scholar 

  29. E. Tiesinga, B.J. Verhaar, H.T.C. Stoof, Phys. Rev. A 47, 4114 (1993).

    Article  ADS  Google Scholar 

  30. TUNL nuclear data evaluation project. WWW: http://www.tunl.duke.edu/NuclData.

  31. D.E. Gonzales Trotter et al., Phys. Rev. Lett. 83, 3788 (1999).

    Article  ADS  Google Scholar 

  32. G. Audi, A.H. Wapstra, Nucl. Phys. A 595, 409 (1995).

    Article  ADS  Google Scholar 

  33. M.T. Yamashita, T. Frederico, L. Tomio, Phys. Lett. B 660, 339 (2008) [arXiv:0704.1461 [nucl-th]].

    Article  ADS  Google Scholar 

  34. V. Arora, I. Mazumdar, V.S. Bhasin, Phys. Rev. C 69, R061301 (2004).

    Article  ADS  Google Scholar 

  35. I. Mazumdar, A.R.P. Rau, V.S. Bhasin, Phys. Rev. Lett. 97, 062503 (2006) [arXiv:quant-ph/0607193].

    Article  ADS  Google Scholar 

  36. F.M. Marqués et al., Phys. Lett. B 476, 219 (2000); Phys. Rev. C 64, 061301 (2001).

    Article  ADS  Google Scholar 

  37. M.T. Yamashita, L. Tomio, T. Frederico, Nucl. Phys. A 735, 40 (2004) [arXiv:nucl-th/0401063].

    Article  ADS  Google Scholar 

  38. K.H. Wilcox et al., Phys. Lett. B 59, 142 (1975).

    Article  ADS  Google Scholar 

  39. M. Thoennessen, S. Yokoyama, P.G. Hansen, Phys. Rev. C 63, 014308 (2000).

    Article  ADS  Google Scholar 

  40. T. Nakamura et al., Phys. Rev. Lett. 83, 1112 (1999).

    Article  ADS  Google Scholar 

  41. C.A. Bertulani, M.S. Hussein, Phys. Rev. C 76, 051602 (2007) [arXiv:0705.3998 [nucl-th]].

    Article  ADS  Google Scholar 

  42. K. Hagino, H. Sagawa, Phys. Rev. C 76, 047302 (2007) [arXiv:0708.1543 [nucl-th]].

    Article  ADS  Google Scholar 

  43. H.-W. Hammer, T. Mehen, Phys. Lett. B 516, 353 (2001).

    Article  ADS  Google Scholar 

  44. L. Platter, D.R. Phillips, Few Body Syst. 40, 35 (2006).

    Article  ADS  Google Scholar 

  45. C.A. Bertulani, G. Baur, Phys. Rep. 163, 299 (1988).

    Article  ADS  Google Scholar 

  46. N.A. Orr, arXiv:0803.0886.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Canham.

Additional information

Communicated by J. Wambach

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canham, D.L., Hammer, H.W. Universal properties and structure of halo nuclei. Eur. Phys. J. A 37, 367–380 (2008). https://doi.org/10.1140/epja/i2008-10632-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2008-10632-4

PACS

Navigation