Skip to main content

Advertisement

Log in

Extensive γ -ray spectroscopy of normally and superdeformed structures in 61 29Cu32

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

A largely extended experimental knowledge of the 61 29Cu32 nucleus has been obtained from three experiments. Excited states in 61Cu were produced via the fusion-evaporation reaction 28Si(36Ar, 3p)61Cu . In addition to the Ge array GAMMASPHERE, neutron and charged-particle detectors placed around the target position were used for high-performance particle spectroscopy. The constructed level scheme includes more than 160 energy levels and 320 γ -ray transitions belonging to both normally deformed as well as superdeformed rotational structures. The multipolarities have been determined for the γ -ray transitions and as a result spin-parity assignments are given for nearly all energy levels. Experimental results in the normally deformed region are compared with predictions from large-scale shell model calculations. The collective structures are compared with results from cranked Nilsson-Strutinsky calculations. The results reveal the need to modify the standard Nilsson parameters in the mass A ∼ 60 region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.K. Johansson, Eur. Phys. J. A 27, 157 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  2. A. Poves, Nucl. Phys. A 694, 157 (2001).

    Article  ADS  Google Scholar 

  3. M. Honma, T. Otsuka, B.A. Brown, T. Mizusaki, Eur. Phys. J. A 25, s01, 499 (2005).

    Google Scholar 

  4. S.G. Nilsson, Mat.-Fys. Medd. K. Dan. Vidensk. Selsk. 29 (16), 1 (1955).

    MathSciNet  Google Scholar 

  5. C. Gustafsson, Ark. Fys. 36, 613 (1967).

    Google Scholar 

  6. A.V. Afanasjev, D.B. Fossan, G.J. Lane, I. Ragnarsson, Phys. Rep. 322, 1 (1999).

    Article  Google Scholar 

  7. C. Andreoiu, Eur. Phys. J. A 14, 317 (2002).

    Article  ADS  Google Scholar 

  8. D.G. Sarantites, Phys. Rev. C 8, 629 (1973).

    Article  ADS  Google Scholar 

  9. J.H. Barker, Phys. Rev. C 18, 119 (1978).

    Article  ADS  Google Scholar 

  10. Y. Hatsukawa, Z. Phys. A 359, 3 (1997).

    Article  Google Scholar 

  11. S.M. Vincent, Phys. Rev. C 60, 064308 (1999).

    Article  ADS  Google Scholar 

  12. O. Izotova, Phys. Rev. C 69, 037303 (2004).

    Article  ADS  Google Scholar 

  13. D. Rudolph, Phys. Rev. Lett. 96, 092501 (2006).

    Article  ADS  Google Scholar 

  14. D.A. Torres, in preparation.

  15. C.-H. Yu, Phys. Rev. C 60, 031305 (1999).

    Article  ADS  Google Scholar 

  16. L.-L. Andersson, in preparation.

  17. C.E. Svensson, Phys. Rev. Lett. 80, 2558 (1998).

    Article  ADS  Google Scholar 

  18. D.G. Sarantites, Nucl. Instrum. Methods Phys. Res. A 381, 418 (1996).

    Article  ADS  Google Scholar 

  19. D. Rudolph, Eur. Phys. J. A 4, 115 (1999).

    Article  ADS  Google Scholar 

  20. D. Rudolph, Eur. Phys. J. A 14, 137 (2004).

    Article  ADS  Google Scholar 

  21. E.K. Johansson, Licentiate Thesis, Lund University, LUNFD6/(NFFR-3099)/1-74/(2006).

  22. D.G. Sarantites, Nucl. Instrum. Methods Phys. Res. A 530, 473 (2004).

    Article  ADS  Google Scholar 

  23. C.J. Chiara, Nucl. Instrum. Methods Phys. Res. A 523, 374 (2004).

    Article  ADS  Google Scholar 

  24. C.E. Svensson, Nucl. Instrum. Methods Phys. Res. A 396, 228 (1997).

    Article  ADS  Google Scholar 

  25. D.C. Radford, Nucl. Instrum. Methods Phys. Res. A 361, 297 (1995).

    Article  ADS  Google Scholar 

  26. J. Theuerkauf, S. Esser, S. Krink, M. Luig, N. Nicolay, O. Stuch, H. Wolters, program TV, University of Cologne, unpublished.

  27. D. Seweryniak, J. Nyberg, C. Fahlander, A. Johnsson, Nucl. Instrum. Methods Phys. Res. A 340, 353 (1994).

    Article  ADS  Google Scholar 

  28. D.A. Torres, PhD Thesis, Universidad Nacional de Colombia (2007).

  29. M.R. Bhat, Nucl. Data Sheets 88, 417 (1999).

    Article  ADS  Google Scholar 

  30. E. Caurier, shell model code ANTOINE, IRES, Strasbourg (1989-2002).

  31. E. Caurier, F. Nowacki, Acta Phys. Pol. B 30, 705 (1999).

    ADS  Google Scholar 

  32. E. Caurier, G. Mart\'inez-Pinedo, F. Nowacki, A. Poves, A.P. Zuker, Rev. Mod. Phys. 77, 427 (2005).

    Article  ADS  Google Scholar 

  33. R. du Rietz, Phys. Rev. Lett. 93, 222501 (2004).

    Article  ADS  Google Scholar 

  34. L.-L. Andersson, Eur. Phys. J. A 30, 381 (2006).

    Article  ADS  Google Scholar 

  35. D.R. Inglis, Phys. Rev. 96, 1059 (1954).

    Article  MATH  ADS  Google Scholar 

  36. D.R. Inglis, Phys. Rev. 103, 1786 (1956).

    Article  ADS  Google Scholar 

  37. G. Andersson, Nucl. Phys. A 268, 205 (1976).

    Article  ADS  Google Scholar 

  38. T. Bengtsson, I. Ragnarsson, Nucl. Phys. A 436, 14 (1985).

    Article  ADS  Google Scholar 

  39. S. Cohen, F. Plasil, W.J. Swiatecki, Ann. Phys. (N.Y.) 82, 557 (1974).

    Article  ADS  Google Scholar 

  40. K. Pomorski, J. Dudek, Phys. Rev. C 67, 044316 (2003).

    Article  ADS  Google Scholar 

  41. B.G. Carlsson, I. Ragnarsson, Phys. Rev. C 74, 011302(R) (2006).

    Article  ADS  Google Scholar 

  42. V.M. Strutinsky, Nucl. Phys. A 9122, 1 (1968).

    Article  ADS  Google Scholar 

  43. A.L. Goodman, Nucl. Phys. A 230, 466 (1974).

    Article  ADS  Google Scholar 

  44. L.-L. Andersson, PhD Thesis, Lund, to be published.

  45. C. Andreoiu, Phys. Rev. Lett. 91, 232502 (2003).

    Article  ADS  Google Scholar 

  46. I. Ragnarsson, Acta Phys. Pol. B 27, 33 (1996).

    Google Scholar 

  47. S.G. Nilsson, I. Ragnarsson, Shapes and Shells in Nuclear Structure (Cambridge University Press, 1995).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. -L. Andersson.

Additional information

R. Krücken

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersson, L.L., Rudolph, D., Johansson, E.K. et al. Extensive γ -ray spectroscopy of normally and superdeformed structures in 61 29Cu32 . Eur. Phys. J. A 36, 251–278 (2008). https://doi.org/10.1140/epja/i2008-10590-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2008-10590-9

PACS.

Navigation