Elsevier

Nuclear Physics A

Volume 786, Issues 1–4, 15 April 2007, Pages 31-46
Nuclear Physics A

Global properties of fp-shell interactions in many-nucleon systems

https://doi.org/10.1016/j.nuclphysa.2007.01.087Get rights and content

Abstract

Spectral distribution theory, which can be used to compare microscopic interactions over a broad range of nuclei, is applied in an analysis of two modern effective interactions based on the realistic CD-Bonn potential for 0Ω no-core shell model calculations in the fp shell, as well as in a comparison of these with the realistic shell-model GXPF1 interaction. In particular, we explore the ability of these interaction to account for the development of isovector pairing correlations and collective rotational motion in the fp shell. Our findings expose the similarities of these two-body interactions, especially as this relates to their pairing and rotational characteristics. Further, the GXPF1 interaction is used to determine the strength parameter of a quadrupole term that can be used to augment an isovector-pairing model interaction with Sp(4) dynamical symmetry, which in turn is shown to yield reasonable agreement with the low-lying energy spectra of 58Ni and 58Cu.

References (53)

  • J.P. Draayer

    Nucl. Phys. A

    (1973)
  • K.T. Hecht et al.

    Nucl. Phys. A

    (1974)
  • T.R. Halemane et al.

    Nucl. Phys. A

    (1978)
  • V.K.B. Kota

    Phys. Rev. C

    (1979)
    Fortran Programs for Statistical Spectroscopy...
  • C.R. Countee et al.

    Nucl. Phys. A

    (1981)
  • J.P. Draayer et al.

    Nucl. Phys. A

    (1982)
  • S. Popescu, S. Stoica, J.P. Vary, P. Navratil, in...
  • M. Honma et al.

    Phys. Rev. C

    (2004)
  • K.D. Sviratcheva et al.

    Phys. Rev. C

    (2004)
  • J.P. Draayer et al.

    Phys. Lett.

    (1975)
    J.P. Draayer et al.

    Phys. Lett.

    (1975)
    J.P. Draayer et al.

    Phys. Lett.

    (1975)
    J.P. Draayer et al.

    Ann. Phys.

    (1977)
    J.P. Draayer et al.

    Ann. Phys.

    (1977)
    B.D. Chang et al.

    Phys. Rev. C

    (1979)
  • V. Potbhare

    Nucl. Phys. A

    (1977)
  • J.B. French et al.

    Ann. Phys. (N.Y.)

    (1988)
  • V.K.B. Kota et al.

    Z. Phys. A

    (1995)
    V.K.B. Kota et al.

    Z. Phys. A

    (1995)
  • S. Tomsovic et al.

    Phys. Rev. C

    (2000)
  • J.M.G. Gomez et al.

    Phys. Lett. B

    (2003)
  • M. Horoi et al.

    Phys. Rev. C

    (2004)
    M. Horoi et al.

    Phys. Rev. C

    (2003)
  • N.D. Chavda et al.

    Phys. Lett. A

    (2004)
  • V.K.B. Kota

    Phys. Rev. C

    (2005)
  • J.B. French
  • S. Sarkar et al.

    Phys. Rev. C

    (1987)
  • J.P. Elliott

    Proc. R. Soc. (London) A

    (1958)
    J.P. Elliott

    Proc. R. Soc. (London) A

    (1958)
    J.P. Elliott et al.

    Proc. R. Soc. (London) A

    (1963)
  • B.D. Chang

    Nucl. Phys. A

    (1978)
  • J.B. French

    Phys. Lett.

    (1967)
  • R. Machleidt et al.

    Phys. Rev. C

    (1996)
    R. Machleidt

    Phys. Rev. C

    (2001)
  • D.R. Entem et al.

    Phys. Rev. C

    (2003)
  • J.B. French et al.

    Phys. Rev. C

    (1971)
  • Cited by (17)

    • Symmetry-guided large-scale shell-model theory

      2016, Progress in Particle and Nuclear Physics
    • Program in C for studying characteristic properties of two-body interactions in the framework of spectral distribution theory

      2014, Computer Physics Communications
      Citation Excerpt :

      In addition, SDT gives an exact and simple prescription for identifying ‘density-dependent’ monopole (centroid), one-body (induced single-particle energies), and its residual, irreducible two-body parts. The theory is readily extensible to 3-body interactions and beyond and can be of special interest when such interactions are invoked, e.g., [34–36]. Hence, SDT framework provides important information on the evolution of the shell structure, shell gaps, binding energies and contribution of 3-body forces with increasing number of particles [37–39].

    • Nuclear Data Sheets for A = 58

      2010, Nuclear Data Sheets
    • No-core shell model for A = 47 and A = 49

      2010, Journal of Physics G: Nuclear and Particle Physics
    • A no-core shell model for <sup>48</sup>Ca, <sup>48</sup>Sc and <sup>48</sup>Ti

      2009, Journal of Physics G: Nuclear and Particle Physics
    View all citing articles on Scopus

    SLAC-PUB-11903, UCRL-JRNL-222549.

    View full text