Skip to main content
Log in

Cluster states in atomic nuclei and cluster-decay processes

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The relationship between decay properties of nuclei (primarily cluster properties) and cluster-decay characteristics is discussed. Both purely microscopic and microscopically substantiated semimicroscopic and semiempirical methods are considered. The current state of the proton-, α-, and cluster-radioactivity theory is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Wildermuth and Y. Tang, A Unified Theory or the Nucleus (Vieweg, Wiesbaden, 1977; Mir, Moscow, 1980).

    Book  Google Scholar 

  2. S. G. Kadmensky and W. I. Furman, Alpha-Decay and Related Nuclear Reactions (Energoatomizdat, Moscow, 1985) [in Russian].

    Google Scholar 

  3. R. G. Lovas, R. J. Liotta, A. Insolia, et al., “Microscopic Theory of Cluster Radioactivity,” Phys. Rep. 294, 265–362 (1998).

    Article  ADS  Google Scholar 

  4. S. G. Kadmensky and V. E. Kalechits, “Absolute Widths of α-Decay,” Yad. Fiz. 12, 70–78 (1970) [Sov. J. Nucl. Phys. 12, 37 (1970)].

    Google Scholar 

  5. S. G. Kadmensky, V. E. Kalechits, and A. A. Martynov, “Alpha-Decay of Spherical Nuclei,” Yad. Fiz. 13, 300–313 (1971) [Sov. J. Nucl. Phys. 13, 166 (1971)].

    Google Scholar 

  6. S. G. Kadmensky, V. E. Kalechits, and A. A. Martynov, “Alpha-Decay of Deformed Nuclei,” Yad. Fiz. 14, 343–353 (1971) [Sov. J. Nucl. Phys. 14, 193 (1971)].

    Google Scholar 

  7. S. G. Kadmensky and V. G. Khlebostroev, “Decay Widths of One-Nucleon Quasistationary States of Deformed Nuclei,” Yad. Fiz. 18, 98–988 (1973) [Sov. J. Nucl. Phys. 18, 505 (1973)].

    Google Scholar 

  8. V. P. Bugrov, S. G. Kadmensky, W. I. Furman, and V. G. Khlebostroev, “Multiparticle Variant of Proton and Neutron Radioactivity. The Case of Diagonal Transitions,” Yad. Fiz. 41, 1123–1133 (1985) [Sov. J. Nucl. Phys. 41, 717 (1985)].

    Google Scholar 

  9. V. P. Bugrov, S. G. Kadmensky, V. E. Bunakov, and V. I. Furman, “One Nucleon Decay of Isomeric States of Atomic Nuclei,” Yad. Fiz. 42, 57–67 (1985) [Sov. J. Nucl. Phys. 42, 34 (1985)].

    Google Scholar 

  10. V. P. Bugrov and S. G. Kadmensky, “Protonic Decay of Deformed Nuclei,” Yad. Fiz. 49, 1562–1571 (1989) [Sov. J. Nucl. Phys. 49, 967 (1989)].

    Google Scholar 

  11. S. G. Kadmensky, “Theory of Open Fermi Systems for Describing Atomic Nuclei and Nuclear Reactions,” Yad. Fiz. 62, 236–246 (1999) [Phys. At. Nucl. 62, 201 (1999)].

    Google Scholar 

  12. S. G. Kadmensky, “Fermi-Liquid Theory with Regard for Fragmentation and Retardation Effects,” Fiz. Elem. Chastits At. Yadra 28, 391–448 (1997) [Phys. Part. Nucl. 28, 159 (1997)].

    Google Scholar 

  13. S. G. Kadmensky, “Theory of Nuclear Reactions and Decays with Allowance for Antisymmetrization Effects,” Yad. Fiz. 64, 478–494 (2001) [Phys. At. Nucl. 64, 423 (2001)].

    Google Scholar 

  14. A. Bohr and B. Mottelson, The Structure of Atomic Nucleus (Benjamin Cummings, New York, 1974; Mir, Moscow, 1977), Vol. II.

    Google Scholar 

  15. V. G. Solovjev, Theory of Complex Nuclei (Nauka, Moscow, 1971 [in Russian]; Pergamon Press, Oxford, 1976).

    Google Scholar 

  16. V. G. Solovjev, Theory of Atomic Nucleus. Nuclear Models (Energoatomizdat, Moscow, 1981) [in Russian].

    Google Scholar 

  17. A. M. Lane and R. G. Thomas, “R-Matrix Theory of Nuclear Reactions,” Rev. Mod. Phys. 30, 257–353 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  18. M. Goldberger and K. Watson, Collision Theory (New York, 1964; Mir, Moscow, 1967).

  19. K. Varga and R. J. Liotta, “Shell Model on a Random Gaussian Basis,” Phys. Rev. C 50, R1292–R1295 (1994).

    Article  ADS  Google Scholar 

  20. K. Varga and R. G. Lovas, “Absolute Alpha Decay Width of 212Po in a Combined Shell-Model and Cluster Model,” Phys. Rev. C 50, 1697–1719 (1994).

    Article  Google Scholar 

  21. K. Varga and R. G. Lovas, “Cluster-Configuration Shell-Model for Alpha Decay,” Nucl. Phys. A 550, 421–452 (1994).

    Article  ADS  Google Scholar 

  22. P. O. Fröman et al., Dan. Vid. Selsk. Mat.-Fys. Medd. 1, 3–24 (1957).

    Google Scholar 

  23. T. Fliessbach and H. J. Mang, “On Absolute Values of Alpha-Decay Rates,” Nucl. Phys. A 263, 75–85 (1976).

    Article  ADS  Google Scholar 

  24. J. A. Wheeler, “Molecular Viewpoints in Nuclear Structure. On the Mathematical Description of Light Nuclei by the Method of Resonating Group Structure. I,” Phys. Rev. 52, 1083–1106 (1937).

    Article  ADS  Google Scholar 

  25. J. A. Wheeler, “Molecular Viewpoints in Nuclear Structure. On the Mathematical Description of Light Nuclei by the Method of Resonating Group Structure. II,” Phys. Rev. 52, 1107–1122 (1937).

    Article  ADS  MATH  Google Scholar 

  26. R. Blendowske, T. Fliessbach, and H. Walliser, “Microscopic Calculations of the 14C Decay of Ra Nuclei,” Nucl. Phys. A 464, 75–89 (1987).

    Article  ADS  Google Scholar 

  27. I. Tonozuka and A. Arima, “Surface α-Clustering and α-Decays of 212Po,” Nucl. Phys. A 323, 45–60 (1979).

    Article  ADS  Google Scholar 

  28. P. Schuurmans, et al., “Alpha-Particle Angular Distributions of At and Rn Isotopes and Their Relation to Nuclear Structure,” Phys. Rev. Lett. 77, 4720–4723 (1996).

    Article  ADS  Google Scholar 

  29. P. Schuurmans et al., “Angular Distributions of α-Particles Emitted by Deformed Oriented Nuclei,” Phys. Rev. Lett. 82, 4787–4790 (1999).

    Article  ADS  Google Scholar 

  30. N. Severijns et al., “Angular Distribution of Particles from Oriented 253, 254Es and 255Fm Nuclei,” Phys. Rev. C 71, 044324-044349 (2005).

    Article  ADS  Google Scholar 

  31. J. Rikovska, N. J. Stone, and A. Wohl, “The Statistical Properties of the Angular Distribution of β-Delayed Protons from Oriented Nuclei,” AIP Conference Proceedings 518, 316–320 (1999).

    Article  ADS  Google Scholar 

  32. S. G. Kadmensky, “Protonic Decay of Oriented Nuclei,” Yad. Fiz. 65, 863–873 (2002) [Phys. At. Nucl. 65, 831 (2002)].

    Google Scholar 

  33. S. G. Kadmensky, “Decay and Fission of Oriented Nuclei,” Yad. Fiz. 65, 1452–1472 (2002) [Phys. At. Nucl. 65, 1390 (2002)].

    Google Scholar 

  34. S. G. Kadmensky and A. A. Sonzogni, “Proton Angular Distributions for Decay of Oriented Nuclei,” Phys. Rev. C 62, 044607–044612 (2000).

    Article  Google Scholar 

  35. J. Cerny, et al., Phys. Lett. B 37, 281–284 (1970).

    Google Scholar 

  36. S. Hofmann, et al., “Proton Radioactivity of 151Lu,” Z. Phys. A 305, 111–123 (1982).

    Article  ADS  Google Scholar 

  37. O. Klepper, et al., “Direct and Beta-Delayed Proton Decay of Very Neutron-Deficient Rare-Earth Isotopes Produced in the Reaction 58Ni + 92Mo,” Z. Phys. A 305, 125–130 (1982).

    Article  ADS  Google Scholar 

  38. S. Hoffman, in Nuclear Decay Models, Ed. by D. Poenaru (Inst. Physics, UK, Bristol, 1996).

    Google Scholar 

  39. P. J. Woods and C. N. Davids, “Nuclei beyond the Proton Drip-Line,” Annu. Rev. Nuc. Part. Sci. 47, 541–590 (1997).

    Article  ADS  Google Scholar 

  40. V. P. Bugrov and S. G. Kadmensky, “Proton Decay and Shape of Neutron-Deficient Nuclei,” Yad. Fiz. 59, 424–427 (1996) [Phys. At. Nucl. 59, 399 (1996)].

    Google Scholar 

  41. S. G. Kadmensky, “Theoretical Approaches to Studying Protonic Decays of Nuclei and Interpretation of Experimental Data,” Yad. Fiz. 63, 613–625 (2000) [Phys. Atom. Nucl. 63, 551 (2000)].

    Google Scholar 

  42. S. G. Kadmensky and M. M. Lesnykh, “Protonic Decay and Shape of Shell Nuclei Potential near Proton Stability Line,” Izv. Akad. Nauk SSSR, Ser. Fiz. 64(4), 474–481 (2000).

    Google Scholar 

  43. S. Aberg, P. B. Semmes, and W. Nazarevich, “Spherical Proton Emitters,” Phys. Rev. C 56, 1762–1773 (1997).

    Article  ADS  Google Scholar 

  44. S. Aberg, P. B. Semmes, and W. Nazarevich, “Erratum: Spherical Proton Emitters,” Phys. Rev. C 56, 1762 (1997) [Phys. Rev. C 58, 3011 (1997)].

    Article  ADS  Google Scholar 

  45. C. N. Davids and H. Esbensen, “Decay Rates of Spherical and Deformed Proton Emitters,” Phys. Rev. C 61, 054302–054307 (2000).

    Article  ADS  Google Scholar 

  46. L. S. Ferreira, E. Maglione, and R. J. Liotta, “Nucleon Resonances in Deformed Nuclei,” Phys. Rev. Lett. 78, 1640–1643 (1997).

    Article  ADS  Google Scholar 

  47. E. Maglione and L. S. Ferreira, “Fine Structure in Proton Emission from Deformed 131Eu,” Phys. Rev. C 61, 047307–047309 (2000).

    Article  ADS  Google Scholar 

  48. F. D. Becchetti, Jr. and G. W. Greenless, “Nucleon-Nucleus Optical-Model Parameters, A > 40, E < 50 MeV,” Phys. Rev. 182, 1190–1209 (1969).

    Article  ADS  Google Scholar 

  49. S. A. Fayans, “Shell Levels of Spherical Nuclei,” Preprint No. IAE-1539 (Moscow, 1968).

  50. S. Liran and N. Zeldes, Atomic Data Nuclear Data Tables 17, 1–28 (1976).

    Article  Google Scholar 

  51. A. C. Merchant, “Alpha Particle Cluster States in fp-Shell Nuclei,” Phys. Rev. C 36, 778–791 (1987).

    Article  ADS  Google Scholar 

  52. H. Horiuchi, “Kernels of GCM, RGM, and OCM and Their Calculational Methods,” Progr. Theor. Phys. Suppl. 62, 90–190 (1977).

    Article  ADS  Google Scholar 

  53. S. Saito, “Interaction between Clusters and Pauli Principle,” Prog. Theor. Phys. 41, 705–722 (1969).

    Article  ADS  Google Scholar 

  54. B. Buck and A. C. Merchant, “Alpha-Decay Calculations with Realistic Potential,” Phys. Rev. C 45, 2247–2253 (1991).

    Article  ADS  Google Scholar 

  55. V. Z. Gol’dberg, V. I. Dukhanov, A. E. Pakhomov, et al., “High Lying α-Cluster States in the Light Nuclei 16O, 20Ne, 22Ne, and 24Mg,” Yad. Fiz. 60, 1186–1193 (1997) [Phys. At. Nucl. 60, 1061 (1997)].

    Google Scholar 

  56. K.-M. Källman, M. Brenner, V. Z. Goldberg, et al., “Narrow α + 28Si Elastic-Scattering States at High Excitation in 32S,” Eur. Phys. J. A 16, 159–169 (2003).

    Article  ADS  Google Scholar 

  57. R. Abegg and C. A. Davis, “24Mg States Observed Via 20Ne(α, α0)20Ne,” Phys. Rev. C 43, 2523–2540 (1991).

    Article  ADS  Google Scholar 

  58. G. Röpke et al., “Four Particle Condensate in Strongly Coupled Fermion Systems,” Phys. Rev. Lett. 80(15), 3177–3180 (1998).

    Article  ADS  Google Scholar 

  59. A. Toshaki, “Alpha Cluster Condensate in 12C and 16O,” Phys. Rev. Lett. 87(19), 192501–192504 (2001).

    Article  ADS  Google Scholar 

  60. P. Schuck, et al., “Alpha-Particle Condensation in Nuclei,” Acta Physica Hungarica: Heavy Ion Physics 18(2–4), 241–246 (2003).

    ADS  Google Scholar 

  61. S. D. Kurgalin and Yu. M. Tchuvil’sky, “Microscopic SU(3) Model of α-Particle States in 2s-1d Nuclei,” J. of Phys. G: Nucl. Part. Phys. 25, 929–931 (1999).

    Article  ADS  Google Scholar 

  62. I. A. Gnilozub, S. D. Kurgalin, Yu. M. Tchuvil’sky, “Alpha-Particle States in Extended Elliott Model,” Acta Physica Hungarica: Heavy Ion Physics 18(2–4), 235–240 (2003).

    ADS  Google Scholar 

  63. I. A. Gnilozub, S. D. Kurgalin, and Yu. M. Tchuvil’sky, “Properties of Alpha-Particle Solutions to the Many-Nucleon Problem,” Yad. Fiz. 69, 1043–1059 (2006); Phys. At. Nucl. 69, 1014 (2006).

    Google Scholar 

  64. J. P. Elliott, “Collective Motion in the Nuclear Shell-Model. Classification Schemes for States of Mixed Configurations,” Proc. Roy. Soc. London, A 245, 128–145 (1958).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. M. Harvey, “The Nuclear SU 3 Model,” Adv. Nucl. Phys. 1, 67–182 (1968).

    Article  Google Scholar 

  66. K. Wildermuth and Th. Kannelopulos, “Cluster Representation of Harmonic Oscillator Wave Function,” Nucl. Phys. A 7, 150–159 (1958).

    Article  Google Scholar 

  67. O. F. Nemets, V. G. Neudachin, A. T. Rudchik, et al., Nucleon Clusters in Atomic Nuclei and Multinucleon Transfer Reactions, Ed. by G. F. Filippov (Naukova dumka, Kiev, 1988) [in Russian].

    Google Scholar 

  68. I. T. Obukhovsky, Yu. F. Smirnov, and Yu. M. Tchuvil’sky, “On the Construction of Wave-Functions in the Six-Quark System,” J. Phys. A 15, 7–23 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  69. S. G. Kadmensky, et al., “Alpha-Decay of Neutron Resonances and Testing of Optical Alpha-Particle Potentials in Subbarrier Region,” Yad. Fiz. 33, 573–575 (1981) [Sov. J. Nucl. Phys. 33, 298 (1981)].

    Google Scholar 

  70. W. I. Furman, et al., “The Problem of Alpha-Cluster Levels in Heavy Nuclei,” Acta Phys. Polonica 12, 637–641 (1982).

    Google Scholar 

  71. N. P. Balabanov, V. A. Vtyurin, Yu. M. Gledenov, and Yu. P. Popov, “Investigation of Alpha-Widths of Compound Nuclei,” Fiz. Elem. Chastits At. Yadra 21, 317–363 (1990) [Sov. J. Part. Nucl. 21, 131 (1990)].

    Google Scholar 

  72. Alpha-, Beta-and Gamma-Spectroscopy, Ed. by K. Zigban (Atomizdat, Moscow, 1969), Vols. 1–3 [in Russian].

    Google Scholar 

  73. R. G. Thomas, “Finite Size α-Decay for Spherical Nuclei,” Prog. Theor. Phys. 12, 253–260 (1958).

    Article  ADS  Google Scholar 

  74. V. G. Soloviev, “Effect of Pairing Correlations on the Alpha-Decay Rates,” Phys. Lett. 1, 202–205 (1996).

    Article  ADS  Google Scholar 

  75. H. J. Mang and J. O. Rasmussen, “Shell-Model Calculations of Alpha Decay Rates of Even-Even Spheroidal Nuclei,” Mat.-Fys. Skr. Dan. Vid. Selsk 2(3), 39 (1962).

    MATH  Google Scholar 

  76. J. K. Poggenburg, H. J. Mang, and J. O. Rasmussen, “Theoretical Alpha-Decay Rates for the Actinide Region,” Phys. Rev. 181, 1697–1719 (1971).

    Article  ADS  Google Scholar 

  77. S. G. Kadmensky and A. A. Martynov, “Alpha-Decay Probabilities of odd and odd-odd Spherical Nuclei and Superfluidity,” Yad. Fiz. 17, 75–80 (1973) [Sov. J. Nucl. Phys. 17, 39 (1973)].

    Google Scholar 

  78. S. G. Kadmensky and W. I. Furman, “Alpha-Decay of Spherical Nuclei,” Fiz. Elem. Chastits At. Yadra 6, 469–514 (1975) [Sov. J. Part. Nucl. 6, 189 (1975)].

    Google Scholar 

  79. W. I. Furman, S. Holan, and S. G. Kadmensky, “Finite Size α-Decay for Spherical Nuclei,” Z. Phys. A 226, 131–141 (1974).

    Google Scholar 

  80. S. G. Kadmensky and K. S. Rybak, “Pairing Correlations in 210Po and 206Pb and Alpha Decay of 210Po,” Yad. Fiz. 19, 971–978 (1974) [Sov. J. Nucl. Phys. 19, 499 (1974)].

    Google Scholar 

  81. S. G. Kadmensky, K. S. Rybak, and W. I. Furman, “The Choice of Density-Dependent Effective Interaction and Alpha-Decay of Heavy Spherical Nuclei,” Yad. Fiz. 27, 906–915 (1978) [Sov. J. Nucl. Phys. 27, 481 (1978)].

    Google Scholar 

  82. S. G. Kadmensky, “On Absolute Values of α-Widths for Heavy Spherical Nuclei,” Z. Phys. A 312, 113–120 (1983).

    Article  ADS  Google Scholar 

  83. S. G. Kadmensky and P. A. Luk’yanovich, “Superfluid Atomic Nuclei and Nucleon-Phonon Interaction,” Yad. Fiz. 49, 384–392 (1989) [Sov. J. Nucl. Phys. 49, 238 (1989)].

    Google Scholar 

  84. A. B. Volkov, “Equilibrium Deformation Calculations of the Ground State Energies of 1p-Shell-Model Nuclei,” Nucl. Phys. A 74, 33–58 (1965).

    Article  Google Scholar 

  85. D. A. Brink and E. Boeker, “Effective Interactions for Hartree-Fock Calculations,” Nucl. Phys. A 91, 1–26 (1967).

    Article  ADS  Google Scholar 

  86. A. Insolia, P. Curutchet, R. J. Liotta, and D. S. Delione, “Microscopic Description of Alpha Decay of Deformed Nuclei,” Phys. Rev. C 44, 545–547 (1991).

    Article  ADS  Google Scholar 

  87. S. D. Delion, A. Insolia, and R. J. Liotta, “Alpha Widths in Deformed Nuclei: Microscopic Approach,” Phys. Rev. C 46, 1346–1354 (1992).

    Article  ADS  Google Scholar 

  88. D. S. Delion, A. Insolia, and R. J. Liotta, “Microscopic Description of the Anisotropy in Alpha Decay,” Phys. Rev. C 49, 3024–3028 (1994).

    Article  ADS  Google Scholar 

  89. D. S. Delion, et al., “Anisotropy in α-Decay of Odd-Mass Deformed Nuclei,” Phys. Rev. C 46, 884–888 (1992).

    Article  ADS  Google Scholar 

  90. A. B. Migdal, Theory of Finite Fermi Systems and Properties of Atomic Nuclei (Mir, Moscow, 1965) [in Russian].

    Google Scholar 

  91. P. E. Hodgson, The Optical Model of Elastic Scattering (Clarendon Press, Oxford, 1963; Atomizdat, Moscow, 1966).

    MATH  Google Scholar 

  92. G. Igo, “Optical-Model Analysis of Excitation Function Data and Theoretical Reaction Cross Section for Alpha Particles,” Phys. Rev. 115, 1665–1674 (1959).

    Article  ADS  Google Scholar 

  93. L. McFadden and G. R. Satchler, “Optical-Model Analysis of the Scattering of 24.7 MeV Alpha Particles,” Nucl. Phys. 84, 177–200 (1966).

    Article  Google Scholar 

  94. A. R. Barnett and J. S. Lilley, “Interactions of Alpha Particles in the Lead Region Near the Coulomb Barrier,” Phys. Rev. C 9, 2010–2027 (1974).

    Article  ADS  Google Scholar 

  95. R. M. DeVries, J. S. Lilley, and M. A. Franey, “Absolute Reduced α Widths in the Lead Region,” Phys. Rev. Lett. 37, 481–484 (1976).

    Article  ADS  Google Scholar 

  96. S. G. Kadmensky, S. D. Kurgalin, W. I. Furman, et al., “α-Decay of Neutron Resonances and Probing α-Particle Optical Potentials in the Deep Subbarrier Region,” Yad. Fiz. 33, 573–575 (1981) [Sov. J. Nucl. Phys. 33, 298 (1981)].

    Google Scholar 

  97. Yu. P. Popov et al., “Investigation of α-Decay of 148Sm Resonance States,” Nucl. Phys. A 188, 212–222 (1972).

    Article  ADS  Google Scholar 

  98. Yu. P. Popov, M. Pshitula, K. G. Rodionov, et al., “Spectra of α-Particles of Resonance States of 146Nd Decay,” Yad. Fiz. 13, 913–917 (1971) [Sov. J. Nucl. Phys. 13, 523 (1971)].

    Google Scholar 

  99. P. Vinivater, K. Nedvedyuk, Yu. P. Popov, et al., “α-Decay of Neutron Resonances in Reaction 149Sm(n, α)146Nd,” Yad. Fiz. 20, 3–9 (1974) [Sov. J. Nucl. Phys. 20, 1 (1974)].

    Google Scholar 

  100. A. Antonov, et al., “The (n, α) Reaction and a New Region of α-Decay of Compound States of Nuclei,” Yad. Fiz. 27, 18–28 (1978) [Sov. J. Nucl. Phys. 27, 9 (1978)].

    Google Scholar 

  101. D. Hudson, Statistics for Physicists (Mir, Moscow, 1970) [in Russian].

    Google Scholar 

  102. S. G. Kadmensky and W. I. Furman, “α-Decay of Spherical Nuclei,” Fiz. Elem. Chastits At. Yadra 6, 469–514 (1975) [Sov. J. Part. Nucl. 6, 189 (1975)].

    Google Scholar 

  103. S. G. Kadmensky and S. D. Kurgalin, “Phase Relations and Probabilities of α-Particles Formation in the Surface Region of Even-Even Nuclei,” Izv. Vyssh. Uchebn. Zaved., Fiz. 23(7), 49–54 (1980).

    Google Scholar 

  104. S. G. Kadmensky and S. D. Kurgalin, “Favored α-Transitions in Deformed Nuclei,” Izv. Akad. Nauk SSSR, Ser. Fiz. 44(9), 1955–1963 (1980).

    Google Scholar 

  105. S. G. Kadmensky and S. D. Kurgalin, Surface Spectroscopic Factors of α-Particles in Deformed Nuclei, Available from VINITI, No. 3287-80 (Voronezhsk. Gos. Un-t, Voronezh, 1980).

    Google Scholar 

  106. V. M. Vakhtel, N. A. Golovkov, K. Ya. Gromov, et al., “Structure Effects and Systematics of α-Transitions for Nuclei with 52 ≤ Z ≤ 90,” Fiz. Elem. Chastits At. Yadra 18, 777–819 (1987) [Sov. J. Part. Nucl. 18, 331 (1987)].

    Google Scholar 

  107. E. Hagberg et al., “Alpha Decay of Neutron-Deficient Ytterbium Isotopes and Their Daughters,” Nucl. Phys. A 293(1–2), 1–9 (1977).

    Article  ADS  Google Scholar 

  108. R. Kirchner et al., “New Neutron-Deficient Tellurium, Iodine and Xenon Isotopes Produced by Reaction of 290 MeV 58Ni Ions on 58Ni and 63Cu Targets,” Phys. Lett. B 70, 150–154 (1977).

    Article  ADS  Google Scholar 

  109. R. Kirchner et al., “Investigation of Alpha-Decay of Short-Lived Isotopes of Rare-Earth Elements in the Region A = 151–157,” in Proc of XXVIII Symp. on Nucl. Spectroscopy and Atomic Nucleus Structure (Nauka, Leningrad, 1978), pp. 70–71.

    Google Scholar 

  110. S. G. Kadmensky, Yu. L. Ratis, W. I. Furman, et al., “Surface Formation Probabilities of Alpha-Particles for Even-Even Nuclei Including Collective Oscillations,” Yad. Fiz. 27, 630–637 (1978) [Sov. J. Nucl. Phys. 27, 337 (1978)].

    Google Scholar 

  111. S. G. Kadmensky, Yu. L. Ratis, and V. G. Khlebostroev, “Alpha-Particle Formation Probabilities in the Near-Surface Region of Even-Even Nuclei Including Collective Oscillations,” in Proc. of 27th Symp. on Nucl. Spectroscopy and Atomic Nucleus Structure (Nauka, Leningrad, 1977), p. 456.

    Google Scholar 

  112. D. P. Grechukhin, “Collective Quadrupole Excitations of Nuclei,” Lections Conspectus (MIFI, 1971) [in Russian].

  113. O. Natan and S. G. Nilsson, Alpha-, Beta-, and Gamma-Spectroscopy (Atomizdat, Moscow, 1969) [in Russian].

    Google Scholar 

  114. V. G. Nosov, “Excitation of Vibrational Levels of Even-Even Nuclei in Alpha-Decay,” Yad. Fiz. 6, 44–61 (1967) [Sov. J. Nucl. Phys. 6, 32 (1967)].

    Google Scholar 

  115. V. G. Nosov, “Fine Structure of α-Decay of Odd Nuclei,” Zh. Eksp. Teor. Fiz. 33, 226–231 (1957) [JETP 6, 176 (1957)].

    Google Scholar 

  116. A. Bohr, P. O. Fröman, B. R. Mottelson, “On the Fine Structure in Alpha Decay,” Mat. Fys. Skr. Dan. Vid. Selsk 29(10), 20 (1955).

    MATH  Google Scholar 

  117. R. R. Chasman and J. O. Rasmussen, “Theoretical Studies of Alpha Decay of 233U,” Phys. Rev. 115, 1257–1263 (1959).

    Article  ADS  Google Scholar 

  118. J. O. Rasmussen and E. R. Hansen, “Numerical Solutions of the Curium-242 Alpha-Decay Wave Equation,” Phys. Rev. 109, 1656–1663 (1958).

    Article  ADS  Google Scholar 

  119. R. R. Chasman and J. O. Rasmussen, “Alpha-Decay of Deformed Even-Even Nuclei,” Phys. Rev. 112, 512–518 (1958).

    Article  ADS  Google Scholar 

  120. S. D. Kurgalin, Calculation Method of Surface Probabilities of Alpha-Particle Formation in Even-Even Deformed Nuclei, Applied Mathematics for Education (Voronezh, 1980) [in Russian].

  121. V. G. Kadmensky, S. G. Kadmensky, S. D. Kurgalin, et al., “The Problem of α-Cluster Levels in Heavy Nuclei,” Acta Physica Polonica 13, 885–894 (1982).

    Google Scholar 

  122. V. G. Chumin, V. M. Vakhtel’, S. G. Kadmensky, and S. D. Kurgalin, “Forbiddenness Factors of Favored α-Transitions in Odd-Odd Nuclei with Z ≥ 85,” in Proc. of XV Symp. on Nucl. Spectroscopy and Nuclear Theory, D6 11574 (Dubna, 1978), pp. 47–48.

  123. K. Ya. Gromov, W. I. Furman, V. G. Chumin, et al., “Formation Probabilities of Alpha-Particles in Cluster Region for Nuclei 107 ≤ A ≤ 226 in the Case of Favored Alpha-Transitions,” in Proc. of XV Symp. on Nucl. Spectroscopy and Nuclear Theory, D6 11574 (Dubna, 1978), pp. 53–54.

  124. V. M. Gorbachev, Yu. S. Zamyatnin, and A. A. Lbov, The Main Characteristics of Isotopes of Heavy Elements (Atomizdat, Moscow, 1975) [in Russian].

    Google Scholar 

  125. A. Rytz, “Catalogue of Recommend Alpha Energy and Intensity Values,” Atomic Data Nuclear Data Tables 12(5), 479–498 (1973).

    Article  ADS  Google Scholar 

  126. B. S. Dzhelepov, R. B. Ivanov, and M. A. Mikhailova, Decay Schemes of Radioactive Nuclei with A = 225–229 (Nauka, Leningrad, 1976) [in Russian].

    Google Scholar 

  127. F. A. Gareev, S. P. Ivanova, and V. V. Pashkevich, “Investigation of Equilibrium Deformations β20 and β40 of Rare-Earth and Transuranic Regions and Dependence of One-Particle Characteristics on Deformation Parameters,” Yad. Fiz. 11, 1200–1212 (1970) [Sov. J. Nucl. Phys. 11, 667 (1970)].

    Google Scholar 

  128. S. P. Ivanova, et al., “Two-Quasiparticle and One-Phonon States for the Even-Even Deformed Nuclei in the Actinide Region,” Fiz. Elem. Chastits At. Yadra 7, 450–498 (1976) [Sov. J. Part. Nucl. 7, 175 (1976)].

    Google Scholar 

  129. H.-D. Zeh, “Contributions to the Theory of Alpha-Decay,” Z. Phys. 17, 490–505 (1963).

    Article  ADS  MATH  Google Scholar 

  130. S. G. Kadmensky, V. E. Kalechits, and A. A. Martynov, “Widths of One-Particle Quasistationary States,” Yad. Fiz. 14, 1174–1178 (1971) [Sov. J. Nucl. Phys. 14, 650 (1971)].

    Google Scholar 

  131. J. Rasmussen, Alpha-Decay. Alpha-, Beta-, and Gamma-Spectroscopy, Ed. by K. Zigban (North Holland, Amsterdam, 1965; Atomizdat, Moscow, 1969).

    Google Scholar 

  132. V. E. Krohn, T. B. Novey, and S. Raboy, “Attenuation of 241Am α-γ Angular Correlation in Liquid Film Sources,” Phys. Rev. 105, 234–237 (1957).

    Article  ADS  Google Scholar 

  133. S. H. Hanauer, “Angular Distribution of Alpha Particles Emitted by Oriented 257Np Nuclei,” Phys. Rev. 124, 1512–1517 (1961).

    Article  ADS  Google Scholar 

  134. K. Siegbahn and F. Asaro, “Magnetic Field Dependence of 243Am α-γ Angular Correlations,” Phys. Lett. 2, 323–325 (1962).

    Article  ADS  Google Scholar 

  135. S. G. Kadmensky, W. I. Furman, and S.-R. Kholan, “α-Decay of Compound States and Strength Function of α-Particles,” OIYaI R4-8734 (Dubna, 1975).

  136. I.-L. Lamm, “Shell-Model Calculations on Deformed Nuclei,” Nucl. Phys. A 125, 504–530 (1969).

    Article  ADS  Google Scholar 

  137. S. G. Kadmensky, V. E. Kalechits, and A. A. Martynov, “α-Decay of Deformed Nuclei,” Yad. Fiz. 14, 343–348 (1971) [Sov. J. Nucl. Phys. 14, 193 (1971)].

    Google Scholar 

  138. Yu. Ts. Oganessian et al., “Synthesis of Superheavy Nuclei in the 48Ca + 244Pu Reaction: 288114,” Phys. Rev. C 62, 041604-1–041604-4 (2000).

    Article  ADS  Google Scholar 

  139. Yu. Ts. Oganessian et al., “Observation of the Decay of 292116,” Phys. Rev. C 63, 011301-1–011301-2 (2001).

    ADS  Google Scholar 

  140. Yu. Ts. Oganessian et al., “Synthesis of 292116 in the 248Cm + 48Ca Reaction,” Phys. At. Nucl. 64, 1349–1355 (2001).

    Article  Google Scholar 

  141. Yu. Ts. Oganessian et al., “Experiments on the Synthesis of Element 115 in the Reaction 243Am(48Ca, xn)291−x115,” Phys. Rev. C 69, 021601-1–021601-5 (2004).

    ADS  Google Scholar 

  142. Yu. Ts. Oganessian et al., “Measurements of Cross Sections for the Fusion-Evaporation Reactions 244Pu(48Ca, xn)292−x114 and 245Cm(48Ca, xn)293−x116,” Phys. Rev. C 69, 054607-1–054607-9 (2004).

    ADS  Google Scholar 

  143. Yu. Ts. Oganessian et al., “Measurements of Cross Sections and Decay Properties of the Isotopes of Elements 112, 114, and 116 Produced in the Fusion Reactions 233, 238U, 242Pu, and 248Cm + 48Ca,” Phys. Rev. C 70, 064609-1–064609-14 (2004).

    Article  ADS  Google Scholar 

  144. Yu. Ts. Oganessian et al., “Synthesis of Elements 115 and 113 in the Reaction 243Am + 48Ca,” Phys. Rev. C 72, 034611-1–034611-16 (2004).

    ADS  Google Scholar 

  145. N. Zeldes, M. Gronau, and A. Lev, “Shell-Model Semi-Empirical Nuclear Masses,” Nucl. Phys. 63, 1–75 (1965).

    Article  Google Scholar 

  146. N. N. Kolesnikov, “Energies of Isobaric and Isotopic Transitions and New Formula for Nuclear Masses,” Vestnik MGU, Ser. Fiz. Astron. 6, 76–87 (1966).

    Google Scholar 

  147. N. N. Kolesnikov and V. M. Vymyatnin, “Nuclear Subshells and Exact Formula for Nuclear Binding Energy,” Izv. Vyssh. Uchebn. Zaved. Fiz. 6, 115–123 (1977).

    Google Scholar 

  148. N. N. Kolesnikov, O. P. Badaev, and V. M. Vymyatnin, “Binding Energies of Nucleons in Medium-Heavy Nuclei,” Available from VINITI, No. 4866-80 (Moscow, 1980).

  149. N. N. Kolesnikov, O. P. Badaev, and M. I. Starosotnikov, “Binding Energy of Nucleons in Nuclei with 22 ≤ Z ≤ 64,” Available from VINITI, No. 4867-81 (Moscow, 1981).

  150. N. N. Kolesnikov and O. P. Badaev, “Isomultiplet Levels, Separation Energies of Nucleons and Beta-Decay of Light Nuclei,” Available from VINITI, No. 6180-83 (Moscow, 1983).

  151. O. P. Badaev, “Mathematical Modeling of Nuclear Energy Surface,” Vestnik MGU, Ser. Fiz. Astron. 3, 23–30 (1996).

    Google Scholar 

  152. O. P. Badaev, “Mathematical Modeling of Binding Energy of Superheavy Atomic Nuclei,” Preprint 12/2002 05-16 (Fiz. Faculty, Mosk. Gos. Univ, 2002).

  153. O. P. Badaev, S. D. Kurgalin, Yu. M. Tchuvil’sky, et al., “Identification of New Superheavy Elements by Characteristics of α Decay,” Vestn. Voronezhsk. Un-ta, Ser. Fiz., Matem. 1, 19–29 (2003).

    Google Scholar 

  154. D. A. Bromley, J. A. Kuehner, and E. Almquist, “Resonant Elastic Scattering of 12C by Carbon,” Phys. Rev. Lett. 4, 365–367 (1960).

    Article  ADS  Google Scholar 

  155. D. A. Bromley, J. A. Kuehner, and E. Almquist, “Elastic Scattering of Identical Spin-Zero Nuclei 12C by Carbon,” Phys. Rev. 123, 534–538 (1961).

    Article  Google Scholar 

  156. C. He, C. Gao, and P. Ning, “Alpha-Transfer Process in 16O + 24Mg Elastic Scattering,” Phys. Rev. C 30, 878–893 (1984).

    Article  Google Scholar 

  157. V. V. Volkov, Deep Inelastic Nuclear Reactions (Energoatomizdat, Moscow, 1982) [in Russian].

    Google Scholar 

  158. H. J. Rose and G. A. Jones, “A New Kind of Natural Radioactivity,” Nature 307, 245–247 (1984).

    Article  ADS  Google Scholar 

  159. D. V. Aleksandrov et al., “Observation of Spontaneous Emission of Nuclei 14C from 223Ra,” Pisma Zh. Eksp. Teor. Fiz. 40, 152–154 (1984) [JETP Lett. 40, 909 (1984)].

    Google Scholar 

  160. L. Brillard et al., “Fine structure in 14C Radioactivity,” in Intern. School-Symp. on Physics of Heavy Ions, Dubna, 1989, OIYaI D7-90-142 (Dubna, 1990), pp. 333–337.

  161. A. Sandulesku, V. N. Poenaru, and V. Grainer, “A New Decaying Mode of Heavy Nuclei Intermediate Between Nuclear Fission and α-Decay,” Fiz. Elem. Chastits At. Yadra 11, 1334–1368 (1980) [Sov. J. Part. Nucl. 11, 528 (1980)].

    Google Scholar 

  162. B. G. Novatskii and A. A. Ogloblin, “New Type of Radioactive Decay of Atomic Nuclei,” Vestn. Akad. Nauk SSSR 1, 81–91 (1988).

    Google Scholar 

  163. Yu. S. Zamyatnin et al., “Cluster Radioactivity: Achievements and Perspectives. Experiments and Theory,” Fiz. Elem. Chastits At. Yadra 21, 537–594 (1990) [Sov. J. Part. Nucl. 21, 231 (1990)].

    Google Scholar 

  164. S. G. Kadmensky et al., “Decay of Atomic Nuclei with Emission of Particles with A > 4,” Izv. Akad. Nauk SSSR, Ser. Fiz. 50(9), 1686–1695 (1986).

    Google Scholar 

  165. S. D. Delion, A. Insolia, and R. J. Liotta, “Pairing Correlation and Quadrupole Deformation Effects on the 14C Decay,” Phys. Rev. Lett. 78, 4549–4552 (1997).

    Article  ADS  Google Scholar 

  166. S. G. Kadmensky, S. D. Kurgalin, W. I. Furman, et al., “Semiempirical Method of Analysis of Relative Probabilities of Spontaneous Emission of Heavy Clusters,” Yad. Fiz. 56(8), 80–86 (1993) [Phys. At. Nucl. 56, 1038 (1993)].

    Google Scholar 

  167. P. R. Christensen and A. Winter, “The Evidence on the Ion-Ion Potentials from Heavy Ion Elastic Scattering,” Phys. Lett. B 65, 19–22 (1976).

    Article  ADS  Google Scholar 

  168. Yu. S. Zamyatnin, S. G. Kadmensky, S. D. Kurgalin, et al., “Search for New Examples of Cluster Decay,” Yad. Fiz. 57, 1981–1994 (1994) [Phys. At. Nucl. 57, 1905 (1994)].

    Google Scholar 

  169. S. N. Kuklin, G. G. Adamian, and N. V. Antonenko, “Spectroscopic Factors and Cluster Decay Half-Lives of Heavy Nuclei,” Phys. Rev. C 71, 014301-1–014301-8 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.G. Kadmensky, S.D. Kurgalin, Yu.M. Tchuvil’sky, 2007, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2007, Vol. 38, No. 6.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadmensky, S.G., Kurgalin, S.D. & Tchuvil’sky, Y.M. Cluster states in atomic nuclei and cluster-decay processes. Phys. Part. Nuclei 38, 699–742 (2007). https://doi.org/10.1134/S1063779607060019

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779607060019

PACS numbers

Navigation