Skip to main content
Log in

Microscopic interpretation of the (t, 3He) reaction at 130 MeV on 90Zr and isovector monopole strength

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The 130-MeV primary tritium beam of the AGOR facility with an intensity of up to 108 pps and the Big Bite Spectrometer experimental setup have been used to study the (t, 3He) reaction between 0° and 5° lab angles on 12C and 90Zr targets. The standard ray-tracing procedure has allowed us to obtain excitation-energy spectra up to 30 MeV in six angular bins for each residual nucleus, with an average energy resolution of 350 keV. We have used the DWBA reaction mechanism model to reproduce those spectra and their angular distributions. In this approximation, the form factor was treated as a folding of an effective projectile-nucleon interaction with a transition density. The effective projectile-nucleon interaction has been adjusted to reproduce the 0° cross section of the 1+ ground state of 12B populated in the 12C(t, 3He) reaction. We have employed RPA wave functions of excited states to construct the form factors. This DWBA+RPA analysis is used to compare calculated and experimental cross sections directly and to discuss the giant resonance excitations in the 90Y nucleus. In this talk, we give some details on this analysis. We show that there are important contributions of L = 2 transitions in the observed cross sections for the 1+ final states that explain the previous difficulties in clearly identifying the monopole strength distributions. We then have a better indication of where the L = 0 part is located with this reaction and its microscopic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y.-W. Lui et al., Phys. Rev. C 73, 014314 (2006).

  2. K. Yako et al., Phys. Lett B 615, 193 (2005).

    ADS  Google Scholar 

  3. M. N. Harakeh and A. van der Woude, Giant Resonances: Fundamental High-Frequency Modes of Nuclear Excitation (Oxford University Press, Oxford, 2001), and references therein.

    Google Scholar 

  4. T. Ichihara et al., Phys. Rev. Lett. 89, 142501 (2002), and references therein.

  5. R. G. T. Zegers et al., Phys. Rev. Lett. 90, 202501 (2003).

  6. W. G. Love and M. A. Franey, Phys. Rev. C 24, 1073 (1981).

    Article  ADS  Google Scholar 

  7. S. Brandenburg et al., in Proceedings of the 16th International Conference on Cyclotrons and Their Applications, East Lansing, MI, USA, 2001, AIP Conf. Proc. 600, 463 (2001).

  8. J. Guillot et al., Phys. Rev. C 73, 014616 (2006).

  9. J. Raynal, NEA-1209/05.

  10. W. R. Coker et al., Phys. Rev. C 7, 1154 (1973).

    Article  ADS  Google Scholar 

  11. R. G. T. Zegers et al., nucl-ex/0512025v1.

  12. S. Y. van der Werf et al., Nucl. Phys. A 496, 305 (1989).

    Article  ADS  Google Scholar 

  13. A. Djaloeis and S. Gopal, Nucl. Phys. A 356, 97 (1981).

    Article  ADS  Google Scholar 

  14. M. Hyakutake et al., Nucl. Phys. A 333, 1 (1980).

    Article  ADS  Google Scholar 

  15. S. L. Tabor et al., Phys. Rev. C 25, 1253 (1982).

    Article  ADS  Google Scholar 

  16. T. Nakamura et al., Phys. Lett. B 493, 209 (2000).

    Article  ADS  Google Scholar 

  17. R. Schaeffer, Nucl. Phys. A 164, 145 (1971).

    Article  ADS  Google Scholar 

  18. R. Zegers, PhD Thesis (University of Groningen, 1999) (unpublished).

  19. S. Cohen and D. Kurath, Nucl. Phys. 73, 1 (1965).

    Article  Google Scholar 

  20. S. Y. van der Werf, Phys. Scr., T 32, 43 (1990).

    Article  ADS  Google Scholar 

  21. T. Kawabata, private communication.

  22. S. Y. van der Werf, computer code NORMOD (unpublished).

  23. M. Hofstee et al., Nucl. Phys. A 588, 729 (1995).

    Article  ADS  Google Scholar 

  24. A. Kolomiets, O. Pochivalov, and S. Shlomo, Phys. Rev. C 61, 034312 (2000).

    Google Scholar 

  25. G. Colò and N. Van Giai, Nucl. Phys. A 731, 15 (2004).

    Article  ADS  Google Scholar 

  26. N. Auerbach and A. Klein, Nucl. Phys. A 395, 77 (1983).

    Article  ADS  Google Scholar 

  27. G. Colò, N. Van Giai, P. F. Bortignon, and R. A. Broglia, Phys. Rev. C 50, 1496 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Guillot.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guillot, J. Microscopic interpretation of the (t, 3He) reaction at 130 MeV on 90Zr and isovector monopole strength. Phys. Atom. Nuclei 70, 1392–1401 (2007). https://doi.org/10.1134/S1063778807080121

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778807080121

PACS numbers

Navigation