Skip to main content
Log in

Rare decay modes of fission fragments

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The experimental data on rare modes of radioactive decay of fission fragments is reviewed. These decay modes are due to a large excess of neutrons and a high energy of β decay fragments. They appear in delayed emission of various particles after the β decay (several neutrons, α particles, or heavy clusters) and excitation of unusual states (giant multipole resonances and shape isomers). The β decay and internal conversion of γ radiation into bound states of the atomic electron shell and their influence on the probability of secondary particle emission are considered. The possibility is discussed of observing decays that have not yet been experimentally detected, but theoretically predicted, as well as information on the nuclear structure obtained by studying such decay modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Halpern, Nuclear Fission (Fizmatgiz, Moscow, 1962) [in Russian].

    Google Scholar 

  2. R. Vandenbosh, J. Huizenga, Nuclear Fission (Academic Press, New York, London, 1973).

    Google Scholar 

  3. S. M. Polikanov, Isomerizm of Atomic Nuclei (Atomizdat, Moscow, 1977) [in Russian].

    Google Scholar 

  4. Yu. P. Gangrskii, B. Dalkhsuren, and B. N. Markov, Nuclear Fission Fragments (Energoatomizdat, Moscow, 1986) [in Russian].

    Google Scholar 

  5. Yu. A. Zysin, A. A. Lbov, and L. I. Sel’chenkov, Yields of Fission Products and the Mass Distributions (Gosatomizdat, Moscow, 1963) [in Russian].

    Google Scholar 

  6. E. A. C. Crouch, ADNDT 19, 417 (1977).

    Article  ADS  Google Scholar 

  7. A. C. Wahl, ADNDT 39, 1 (1988).

    Article  ADS  Google Scholar 

  8. I. E. Croall and G. Guninghame, Nucl. Phys. A 125, 402 (1969).

    Article  ADS  Google Scholar 

  9. D. Hoffman, in Proc. of 4th IAEA Symp. on Phys. and Chem. of Fission, Julich, 1979 (IAEA, Vienna, 1980), vol. 2, p. 275.

    Google Scholar 

  10. A. C. Wahl et al., Phys. Rev. 126, 1112 (1962).

    Article  ADS  Google Scholar 

  11. P. Fong, Phys. Rev. 102, 434 (1956).

    Article  ADS  Google Scholar 

  12. B. D. Wilkins et al., Phys. Rev. C 14, 832 (1976).

    Article  Google Scholar 

  13. P. E. Nemirovskii, Contemporary Models of the Atomic Nucleus (Atomizdat, Moscow, 1960) [in Russian].

    Google Scholar 

  14. V. G. Soloviev, Theory of Complex Nuclei (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  15. G. Huber et al., Phys. Rev. C 18, 2242 (1978).

    Google Scholar 

  16. D. Gillemaud-Mueller et al., Nucl. Phys. A 476, 37 (1984).

    Article  ADS  Google Scholar 

  17. S. Raman et al., ADNDT 78, 31 (2001).

    Article  ADS  Google Scholar 

  18. C.-S. Wu and S. A. Moshkovskii, Beta-Decay (Atomizdat, Moscow, 1970) [in Russian].

    Google Scholar 

  19. B. S. Dzhelepov, L. K. Zyryanova, and Yu. P. Suslov, Beta Processes Functions for Analysis of Beta Spectra (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  20. V. A. Karnaukhov and L. A. Petrov, Nuclei Far from the Beta-Stability Line (Energoizdat, Moscow, 1981) [in Russian].

    Google Scholar 

  21. Yu. S. Lyutostanskii, Izv. Akad. Nauk, Ser. Fiz. 50, 834 (1986).

    Google Scholar 

  22. Yu. V. Gaponov and Yu. S. Lyutostanskii, Yad. Fiz. 19, 62 (1974).

    Google Scholar 

  23. K. A. Takahashi, Progr. Theor. Phys. 47, 1500 (1972).

    Article  ADS  Google Scholar 

  24. R. Roberts et al., Phys. Rev. 55, 510 (1939).

    Article  ADS  Google Scholar 

  25. N. Bohr and J. Wheeler, Phys. Rev. 56, 426 (1939).

    Article  ADS  Google Scholar 

  26. L. Tomlison, Nucl. Data Tables 12, 179 (1973).

    Article  ADS  Google Scholar 

  27. G. Rudstam et al., ADNDT 51, 243 (1992).

    Article  Google Scholar 

  28. A. H. Wapstra et al., ADNDT 39, 281 (1988).

    Article  ADS  Google Scholar 

  29. P. L. Reeder et al., Phys. Rev. Lett. 94, 483 (1981).

    Article  ADS  Google Scholar 

  30. Yu. P. Gangrskii et al., Izv. Akad. Nauk, Ser. Fiz. 69, 629 (2005).

    Google Scholar 

  31. E. A. Sokol et al., Nucl. Instrum. Methods Phys. Res. 400, 96 (1997).

    Article  ADS  Google Scholar 

  32. P. Moller et al., ADNDT 69, 340 (1997).

    Google Scholar 

  33. R. E. Azuma et al., Phys. Rev. Lett. 43, 1652 (1978).

    Article  ADS  Google Scholar 

  34. C. Detraz et al., Phys. Lett. B 94, 307 (1980).

    Article  ADS  Google Scholar 

  35. F. Ajsenberg-Sebole, Nucl. Phys. A 506, 1 (1990).

    Article  ADS  Google Scholar 

  36. F. Ajsenberg-Sebole, Nucl. Phys. A 564, 1 (1993).

    Article  Google Scholar 

  37. P. E. Kochler et al., Phys. Rev. C 69, 015803 (2004).

  38. Yu. P. Gangrsky, G. V. Mishinsky, Yu. E. Penionzhkevich, et al., in Proc. LV-National Conf. Nucl. Phys., Frontiers in the Physics of Nucleus, Saint-Petersburg, Russia, 2005 (Book of Abstracts, Saint-Petersburg, 2005), p. 210.

    Google Scholar 

  39. R. L. Fleischer, P. B. Price, and R. M. Walker, Nuclear Tracks in Solids (Univ. California Press, Berkeley, 1975; Atomizdat, Moscow, 1981).

    Google Scholar 

  40. D. Poenaru et al., ADNDT 48, 231 (1991).

    Article  ADS  Google Scholar 

  41. L. K. Peker et al., Phys. Lett. B 36, 547 (1971).

    Article  ADS  Google Scholar 

  42. V. I. Goldanskii and L. K. Peker, Pisma Zh. Eksp. Teor. Fiz. 13, 575 (1971) [JETP Lett. 13, 410 (1971)].

    Google Scholar 

  43. V. I. Goldanskii, Zh. Eksp. Teor. Fiz. 39, 497 (1960) [JETP 12, 348 (1960)].

    Google Scholar 

  44. J. O. Rasmussen et al., Nucl. Phys. A 136, 465 (1969).

    Article  ADS  Google Scholar 

  45. H. Naik et al., Phys. Rev. C 71, 014304 (2005).

  46. D. De Frenne et al., Phys. Rev. C 26 1356 (1982).

    Article  ADS  Google Scholar 

  47. Yu. P. Gangrskii et al., JINR, R15-2005-210 [in Russian].

  48. N. N. Kolesnikov and V. B. Gubin, Izv. VUZOV, Physics 8, 77 (1984).

    Google Scholar 

  49. L. K. Peker, Izv. AN, Ser. Fiz. 38, 807 (1974).

    Google Scholar 

  50. J. Styczen et al., Nucl. Phys. A 262, 317 (1976).

    Article  ADS  Google Scholar 

  51. J. D. Cole et al., Phys. Rev. Lett. 37, 1185 (1976).

    Article  ADS  Google Scholar 

  52. S. M. Polikanov, Sov. Fiz. Uspekhi 107, 685 (1972) [in Russian].

    Article  Google Scholar 

  53. V. M. Strutinsky, Nucl. Phys. A 95, 420 (1967).

    Article  ADS  Google Scholar 

  54. Yu. P. Gangrskii, Fiz. Elem. Chastits At. Yadra 9, 383 (1978) [Phys. Part. Nucl. 9, 158 (1978)].

    Google Scholar 

  55. O. K. Zhuravlev et al., Yad. Fiz. 54, 635 (1991) [Phys. At. Nucl. 54, 386 (1991)].

    Google Scholar 

  56. B. S. Ishkhanov and I. M. Kapitonov, The Interaction of Electromagnetic Radiation with Atomic Nuclei (Izd-vo MGU, Moscow, 1979) [in Russian].

    Google Scholar 

  57. P. M. Endt and P. V. Smith, Nuclear Reactions (North Holland, Amsterdam; 1958; Atomizdat, Moscow, 1964).

    Google Scholar 

  58. A. Stoik et al., Nucl. Phys. A 205, 241 (1989).

    ADS  Google Scholar 

  59. V. M. Mazur and L. M. Mel’nikova, Fiz. Elem. Chastits At. Yadra 37, 1745 (2006) [Phys. Part. Nucl. 37, 923 (2006)].

    Google Scholar 

  60. B. Gundblach et al., Phys. Rev. Lett. 65, 2523 (1985).

    Article  ADS  Google Scholar 

  61. M. Kichinska-Habior et al., Phys. Rev. 45, 569 (1992).

    ADS  Google Scholar 

  62. A. Bracco et al., Phys. Rev. Lett. 62, 2280 (1989).

    Article  ADS  Google Scholar 

  63. S. Fibaltce et al., Nucl. Phys. A 531, 205 (1991).

    Article  ADS  Google Scholar 

  64. M. Jung et al., Phys. Rev. Lett. 69, 2164 (1992).

    Article  ADS  Google Scholar 

  65. F. Bosh et al., Phys. Rev. Lett. 77, 5190 (1996).

    Article  ADS  Google Scholar 

  66. A. A. Rukhadze et al., Yad. Fiz. 69, 620 (2005).

    Google Scholar 

  67. F. F. Karpeshin, Hyp. Inter 143, 79 (2002).

    Article  ADS  Google Scholar 

  68. F. F. Karpeshin, Fiz. Elem. Chastits At. Yadra 37, 521 (2006) [Phys. Part. Nucl. 37, 284 (2006)].

    Google Scholar 

  69. F. Attallah et al., Phys. Rev. Lett. 75, 1711 (1995).

    Article  ADS  Google Scholar 

  70. Yu. P. Gangrskii et al., Izv. RAN, Ser. Fiz. 68, 149 (2004).

    Google Scholar 

  71. F. F. Karpeshin et al., Izv. RAN, Ser. Fiz. 58, 49 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.P. Gangrskii, 2007, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2007, Vol. 38, No. 6.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gangrskii, Y.P. Rare decay modes of fission fragments. Phys. Part. Nuclei 38, 743–761 (2007). https://doi.org/10.1134/S1063779607060020

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779607060020

PACS numbers

Navigation