Skip to main content
Log in

Deformation change in light iridium nuclei from laser spectroscopy

  • Nuclear Structure and Reactions
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

Laser spectroscopy measurements have been performed on neutron-deficient and stable Ir isotopes using the COMPLIS experimental setup installed at ISOLDE-CERN. The radioactive Ir atoms were obtained from successive decays of a mass-separated Hg beam deposited onto a carbon substrate after deceleration to 1kV and subsequently laser desorbed. A three-color, two-step resonant scheme was used to selectively ionize the desorbed Ir atoms. The hyperfine structure (HFS) and isotope shift (IS) of the first transition of the ionization path 5d 76s 24 F 9/2 → 5d 76s6p 6 F 11/2 at 351.5nm were measured for 182-189Ir, 186Irm and the stable 191, 193Ir. The nuclear magnetic moments μI and the spectroscopic quadrupole moments Qs were obtained from the HFS spectra and the change of the mean square charge radii from the IS measurements. The sign of μI was experimentally determined for the first time for the masses 182≤A≤189 and the isomeric state 186Irm. The spectroscopic quadrupole moments of 182Ir and 183Ir were measured also for the first time. A large mean square charge radius change between 187Ir and 186Irg and between 186Irm and 186Irg was observed corresponding to a sudden increase in deformation: from β2 ≃ + 0.16 for the heavier group A = 193, 191, 189, 187 and 186m to β2≥ + 0.2 for the lighter group A = 186g, 185, 184, 183 and 182. These results were analyzed in the framework of a microscopic treatment of an axial rotor plus one or two quasiparticle(s). This sudden deformation change is associated with a change in the proton state that describes the odd-nuclei ground state or that participates in the coupling with the neutron in the odd-odd nuclei. This state is identified with the π3/2+[402] orbital for the heavier group and with the π1/2-[541] orbital stemming from the 1h 9/2 spherical subshell for the lighter group. That last state seems to affect strongly the observed values of the nuclear moments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Bonn, Phys. Lett. B 38, 308 (1972).

    Article  ADS  Google Scholar 

  2. G. Ulm, Z. Phys. A 325, 247 (1986).

    Google Scholar 

  3. K. Wallmeroth, Phys. Rev. Lett. 58, 1516 (1987)

    Article  ADS  Google Scholar 

  4. G. Seewald, Phys. Rev. Lett. 77, 5016 (1996).

    Article  ADS  Google Scholar 

  5. C.R. Hammond, Handbook of Chemistry and Physics (CRC Press, Boca Raton, Florida, 1984-1985) p. B5.

  6. U. Krönert, Nucl. Instrum. Methods A 300, 522 (1991).

    Article  ADS  Google Scholar 

  7. G. Savard, Nucl. Phys. A 512, 241 (1990).

    ADS  Google Scholar 

  8. H.T. Duong, Phys. Lett. B 217, 401 (1989).

    Article  ADS  Google Scholar 

  9. Th. Hilberath, Z. Phys. A 342, 1 (1992).

    Article  Google Scholar 

  10. J.K.P. Lee, Nucl. Instrum. Methods B 34, 252 (1988).

    Article  ADS  Google Scholar 

  11. F. Le Blanc, Phys. Rev. Lett. 79, 2213 (1997).

    Article  ADS  Google Scholar 

  12. F. Le Blanc, Phys. Rev. C 60, 054310 (1999).

    Article  ADS  Google Scholar 

  13. S. Büttgenbach, Z. Phys. A 286, 333 (1978).

    Article  Google Scholar 

  14. S. Büttgenbach, Hyperfine Structure in 4d- and 5d-Shell Atoms (Springer-Verlag, Berlin, Heidelberg, New York, 1982) p. 59.

  15. J.-F. Wyart, private communication (1998).

  16. J.E Crawford, Proceedings of the Sixth International Symposium on Resonant Ionization Spectroscopy and Its Applications, Santa Fe, New Mexico, USA, May 24-29, 1992 (Institute of Physics, Williston, USA, 1992).

  17. F. Le Blanc, Hyperfine Interact. 127, 71 (2000).

    Article  ADS  Google Scholar 

  18. J. Sauvage, Hyperfine Interact. 129, 303 (2000) and references therein.

    Article  ADS  Google Scholar 

  19. J. Lettry, Nucl. Instrum. Methods B 126, 170 (1997).

    Article  ADS  Google Scholar 

  20. P. Kilcher, Nucl. Instrum. Methods A 274, 485 (1989).

    Article  ADS  Google Scholar 

  21. I. Brissaud, Nucl. Instrum. Methods B 45, 636 (1990).

    Google Scholar 

  22. D. Verney, Thesis, Université Joseph Fourier-Grenoble I, IPNO-T-01-01 (2000).

  23. W.C. Wiley, I.H. McLaren, Rev. Sci. Instrum. 26, 1150 (1955).

    Article  Google Scholar 

  24. J. Pinard, S. Liberman, Opt. Commun. 20, 344 (1977).

    Article  ADS  Google Scholar 

  25. S. Liberman, Rev. Cethedec, NS 83-2 (1983).

  26. G. Savard, Thesis, McGill University (1988).

  27. J. Pinard, Proceedings of the 3rd International Workshop on Hyperfine Structure and Nuclear Moments of Exotic Nuclei by Laser Spectroscopy, Poznan, Poland, February 3-5, 1997 (Joint Institute for Nuclear Research, Dubna, 1998).

  28. P. Kilcher, Nucl. Instrum. Methods B 70, 537 (1992).

    Article  ADS  Google Scholar 

  29. F. Le Blanc, Nucl. Instrum. Methods B 72, 111 (1992).

    Article  ADS  Google Scholar 

  30. J. Obarheide, Meas. Sci. Technol. 8, 351 (1997).

    Article  ADS  Google Scholar 

  31. K.H. Bürger, Phys. Lett. B 140, 17 (1984).

    Article  ADS  Google Scholar 

  32. P. Raghavan, At. Data Nucl. Data Tables 42, 189 (1989).

    Article  ADS  Google Scholar 

  33. R. Eder, Phys. Rev. C 32, 582 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  34. R. Eder, Hyperfine Interact. 59, 83 (1990).

    Article  Google Scholar 

  35. S. Ohya, J. Phys. G 14, 365 (1988).

    Article  ADS  Google Scholar 

  36. M.G. Booth, Hyperfine Interact. 75, 307 (1992).

    Article  Google Scholar 

  37. A. Narath, Phys. Rev. 165, 506 (1968).

    Article  ADS  Google Scholar 

  38. P.A. Moskowitz, M. Lombardi, Phys. Lett. B 46, 513 (1973).

    Google Scholar 

  39. Y. Tanaka, Phys. Rev. C 29, 1830 (1984).

    Article  ADS  Google Scholar 

  40. E. Hagn, Phys. Lett. B 104, 365 (1981).

    Article  ADS  Google Scholar 

  41. A.L. Allsop, Hyperfine Interact. 12, 289 (1982).

    Article  Google Scholar 

  42. K. Murakawa, T. Kamei, Phys. Rev. 110, 393 (1958).

    Article  ADS  Google Scholar 

  43. R.M. Sternheimer, Phys. Rev. 164, 10 (1967).

    Article  ADS  Google Scholar 

  44. Y. Tanaka, Phys. Rev. Lett. 51, 1633 (1983).

    Article  ADS  Google Scholar 

  45. K. Heilig, A. Steudel, At. Data Nucl. Data Tables 14, 613 (1974).

    Article  ADS  Google Scholar 

  46. Th.A.M. Van Kleef, Physica 23, 843 (1957).

    Article  ADS  Google Scholar 

  47. G. Torbhom, Phys. Rev. A 31, 2038 (1985).

    Article  ADS  Google Scholar 

  48. E.C. Seltzer, Phys. Rev. 188, 1916 (1969).

    Article  ADS  Google Scholar 

  49. J.P. Desclaux, Comput. Phys. Commun. 9, 31 (1975).

    Article  ADS  Google Scholar 

  50. K. Wallmeroth, Nucl. Phys. A 493, 224 (1989).

    Article  ADS  Google Scholar 

  51. S.A. Ahmad, Nucl. Phs. A 483, 244 (1988).

    Article  ADS  Google Scholar 

  52. W.D. Myers, W.J. Swiatecki, Ann. Phys. (N.Y.) 55, 395 (1969).

    Article  ADS  Google Scholar 

  53. W.D. Myers, K.-H. Schmidt, Nucl. Phys. A 410, 61 (1983).

    Article  ADS  Google Scholar 

  54. P. Möller, At. Data Nucl. Data Tables 59, 185 (1995).

    Article  ADS  Google Scholar 

  55. H. Flocard, Nucl. Phys. A 203, 433 (1973).

    Article  ADS  Google Scholar 

  56. M. Meyer, Nucl. Phys. A 316, 93 (1979).

    Article  ADS  Google Scholar 

  57. J. Sauvage, Nucl. Phys. A 370, 231 (1981).

    Article  ADS  Google Scholar 

  58. J. Libert, Phys. Rev. C 25, 586 (1982).

    Article  ADS  Google Scholar 

  59. M.-G. Porquet, Nucl. Phys. A 451, 365 (1986).

    Article  ADS  Google Scholar 

  60. L. Bennour, Nucl. Phys. A 465, 35 (1987)

    Article  ADS  Google Scholar 

  61. C. Bourgeois, Nucl. Phys. A 386, 308 (1982)

    Article  ADS  Google Scholar 

  62. J. Sauvage, Nucl. Phys. A 592, 221 (1995).

    Article  ADS  Google Scholar 

  63. M. Beiner, Nucl. Phys. A 238, 29 (1975).

    Article  ADS  Google Scholar 

  64. R.B. Firestone, Table of isotopes (John Wiley & Sons, New York, 1998).

  65. C. Ekström, Phys. Scr. 14, 199 (1976).

    ADS  Google Scholar 

  66. I.-L. Lamm, Nucl. Phys. A 125, 504 (1969).

    Article  ADS  Google Scholar 

  67. O. Nathan, S.G. Nilsson, Alpha-, beta- and gamma-ray spectroscopy, edited by K. Siegbahn (North-Holland Publ. Co., Amsterdam, 1965) p. 653.

  68. A.J. Kreiner, Nucl. Phys. A 432, 451 (1985).

    Article  ADS  Google Scholar 

  69. T. Duguet, Phys. Rev. C 65, 014310 (2002).

    Article  ADS  Google Scholar 

  70. J.P. Delaroche, Phys. Rev. C 50, 2332 (1994).

    Article  ADS  Google Scholar 

  71. I. Deloncle, Thesis, Université Paris VI, unpublished

  72. M. Girod, J. Libert, private communication.

  73. J. Dechargé, D. Gogny, Phys. Rev. C 21, 1568 (1980)

    Article  ADS  Google Scholar 

  74. A. Zerrouki, Thesis, Université Paris Sud-XI (1979) unpublished.

  75. J. Meyer ter Vehn, Phys. Lett. B 55, 273 (1975)

    Article  ADS  Google Scholar 

  76. E. van Walle, Hyperfine Interact. 22, 507 (1985).

    Article  Google Scholar 

  77. K.E.G. Löbner, Nucl. Data Tables A 7, 495 (1970).

    Google Scholar 

  78. R.H. Price, Nucl. Phys. A 176, 338 (1971)

    Article  ADS  Google Scholar 

  79. R. Piepenbring, H. Nopre, Nucl. Phys. A 133, 113 (1969).

    Article  ADS  Google Scholar 

  80. R. Eder, Z. Phys. A 323, 185 (1986).

    Google Scholar 

  81. S. André, Nucl. Phys. A 325, 445 (1979).

    Article  ADS  Google Scholar 

  82. A.J. Kreiner, Nucl. Phys. A 425, 387 (1985).

    Google Scholar 

  83. J. Sauvage, Proceedings of the International Conference on Nuclear Structure and Related Topics, Dubna, Russia, 2000, Nucl. Phys. Russ. Acad. Sci. 64, 1210 (2001).

    Google Scholar 

  84. M. Sodan, Nucl. Phys. A 237, 333 (1975).

    Article  ADS  Google Scholar 

  85. H. Rubinsztein, M. Gustaffson, Phys. Lett. B 58, 283 (1975).

    Article  ADS  Google Scholar 

  86. K.J. Hofstetter, Phys. Rev. C 8, 2442 (1973).

    Article  ADS  Google Scholar 

  87. E. Hagn, E. Zech, Z. Phys. A 297, 329 (1980) and references therein.

    Article  Google Scholar 

  88. A.J. Kreiner, Phys. Rev. C 29, 1572 (1984).

    Article  ADS  Google Scholar 

  89. G.T. Emery, Nucl. Phys. A 211, 189 (1973).

    Article  ADS  Google Scholar 

  90. P.T. Prokofiev, Bull. Acad. Sci. USSR, Phys. Ser. 38, 104 (1974).

    Google Scholar 

  91. A.J. Kreiner, Phys. Lett. B 279, 233 (1992).

    Article  ADS  Google Scholar 

  92. M.A. Cardona, Phys. Rev. C 55, 144 (1997).

    Article  ADS  Google Scholar 

  93. A. Ben Braham, Nucl. Phys. A 533, 113 (1991).

    Article  ADS  Google Scholar 

  94. R. Eder, Hyperfine Interact. 59, 83 (1990).

    Article  Google Scholar 

  95. R. Hochel, Nucl. Phys. A 211, 165 (1973).

    Article  ADS  Google Scholar 

  96. M.-G. Porquet, Nucl. Phys. A 499, 495 (1989).

    Article  ADS  Google Scholar 

  97. A. Ben Braham, Nucl. Phys. A 482, 553 (1988).

    Article  ADS  Google Scholar 

  98. A.J Kreiner, Phys. Rev. C 34, 1150 (1986).

    Article  ADS  Google Scholar 

  99. A.J. Kreiner, Nucl. Phys. A 282, 243 (1977).

    Article  ADS  Google Scholar 

  100. A. Bohr, B.R. Mottelson, Mat.-Fys. Medd. K. Dan. Vidensk. Selsk. 27, no 16 (1953).

  101. S.G. Nilsson, I. Ragnarsson, Shapes and Shell in Nuclear Structure (Cambridge University Press, Cambridge, 1995) pp. 102-108.

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to D. Verney.

Additional information

D. Guerreau

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verney, D., Cabaret, L., Crawford, J.E. et al. Deformation change in light iridium nuclei from laser spectroscopy. Eur. Phys. J. A 30, 489–518 (2006). https://doi.org/10.1140/epja/i2006-10140-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2006-10140-7

PACS.

Navigation