Skip to main content
Log in

High-precision masses of 29-33Mg and the N = 20 shell “closure”

  • Nuclear Structure and Reactions
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

High-precision mass measurements have been performed on the exotic magnesium isotopes 29-33Mg using the MISTRAL radiofrequency spectrometer, especially suited for very short-lived nuclides. This method, combined with the powerful tool of resonant laser ionization at ISOLDE, has provided a significant reduction of uncertainty for the masses of the most exotic Mg isotopes: a relative error of 7×10-7 was achieved for the weakly produced 33Mg that has a half-life of only 90ms. Moreover, the mass of 33Mg is found to change by over 250keV. Verifying and minimizing binding energy uncertainties in this region of the nuclear chart is important for understanding the lack of binding energy that is normally associated with magic numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Thibault, R. Klapisch, C. Rigaud, A.M. Poskanzer, R. Prieels, L. Lessard, W. Reisdorf, Phys. Rev. C 12, 644 (1975).

    Article  ADS  Google Scholar 

  2. X. Campi, H. Flocard, A.K. Kerman, S. Koonin, Nucl. Phys. A 251, 193 (1975).

    Article  ADS  Google Scholar 

  3. A. Ozawa, Phys. Rev. Lett. 84, 5493 (2000).

    Article  ADS  Google Scholar 

  4. S. Shimoura, Phys. Lett. B 560, 31 (2003).

    Article  ADS  Google Scholar 

  5. F. Sarazin, Phys. Rev. Lett. 84, 5062 (2000).

    Article  ADS  Google Scholar 

  6. E. Becheva, Phys. Rev. Lett. 96, 012501 (2006).

    Article  ADS  Google Scholar 

  7. A. Obertelli, Phys. Rev. C 71, 024304 (2005).

    Article  ADS  Google Scholar 

  8. R. Kanungo, I. Tanihata, A. Ozawa, Phys. Lett. B 528, 58 (2002).

    Article  ADS  Google Scholar 

  9. J.I. Prisciandoaro, Phys. Lett. B 510, 17 (2001).

    Article  ADS  Google Scholar 

  10. P.F. Mantica, Phys. Rev. C 67, 014311 (2003).

    Article  ADS  Google Scholar 

  11. P.F. Mantica, Phys. Rev. C 68, 014311 (2003).

    Article  ADS  Google Scholar 

  12. D.E. Appelbe, Phys. Rev. C 67, 034309 (2003).

    Article  ADS  Google Scholar 

  13. O. Sorlin, Phys. Rev. Lett. 88, 092501 (2002).

    Article  ADS  Google Scholar 

  14. C. Guénaut, Eur. Phys. J. A 25, s01, 33 (2005).

  15. D. Lunney, G. Audi, H. Doubre, S. Henry, C. Monsanglant, M. de Saint Simon, C. Thibault, C. Toader, C. Borcea, G. Bollen, the ISOLDE Collaboration, Phys. Rev. C 64, 054311 (2001).

    Article  ADS  Google Scholar 

  16. K. Heyde, J.L. Wood, J. Phys. G 17, 135 (1991).

    Article  ADS  Google Scholar 

  17. E.K. Warburton, J.A. Becker, B.A. Brown, Phys. Rev. C 41, 1147 (1990).

    Article  ADS  Google Scholar 

  18. E. Caurier, F. Nowacki, A. Poves, J. Retamosa, Phys. Rev. C 58, 2033 (1998).

    Article  ADS  Google Scholar 

  19. Y. Utsuno, Phys. Rev. C 60, 054315 (1999).

    Article  ADS  Google Scholar 

  20. T. Otsuka, Phys. Rev. Lett. 87, 082502 (2001).

    Article  ADS  Google Scholar 

  21. T. Suzuki, R. Fujimoto, T. Otsuka, Phys. Rev. C 67, 044302 (2003).

    Article  ADS  Google Scholar 

  22. Y. Utsuno, Phys. Rev. C 70, 044307 (2004).

    Article  ADS  Google Scholar 

  23. P.D. Stephenson, J. Rikovska-Stone, M.R. Strayer, Phys. Lett. B 545, 291 (2002).

    Article  ADS  Google Scholar 

  24. S. Péru, M. Girod, J.F. Berger, Eur. Phys. J. A 9, 35 (2000).

    Article  Google Scholar 

  25. M. Yamagami, N. Van Giai, Phys. Rev. C 69, 034301 (2004).

    Article  ADS  Google Scholar 

  26. G. Gori, Phys. Rev. C 69, 041302(R) (2004).

    Article  ADS  Google Scholar 

  27. C. Détraz, M. Langevin, M.C. Goffri-Kouassi, D. Guillemaud, M. Epherre, G. Audi, C. Thibault, F. Touchard, Nucl. Phys. A 394, 378 (1983).

    Article  ADS  Google Scholar 

  28. D. Guillemaud\-Mueller, C. Détraz, M. Langevin, F. Naulin, M. de Saint Simon, C. Thibault, F. Touchard, M. Epherre, Nucl. Phys. A 426, 37 (1984).

    Article  ADS  Google Scholar 

  29. S. Nummela, Phys. Rev. C 64, 054313 (2001).

    Article  ADS  Google Scholar 

  30. A.C. Morton, P.F. Mantica, Phys. Lett. B 544, 274 (2002).

    Article  ADS  Google Scholar 

  31. J. Enders, Phys. Rev. C 65, 034318 (2002).

    Article  ADS  Google Scholar 

  32. W. Mittig, Eur. Phys. J. A 15, 157 (2002).

    Article  ADS  Google Scholar 

  33. T. Motobayashi, Eur. Phys. J. A 15, 99 (2002).

    Article  ADS  Google Scholar 

  34. M. Keim, in Proceedings of the International Conference on Exotic Nuclei, Atomic Masses (ENAM98), edited by B.M. Sherrill, D.J. Morrissey, C.N. Davids, AIP Conf. Proc. 455 (AIP, New York, 1998) p. 50.

  35. G. Neyens, M. Kowalska, D. Yordanov, Phys. Rev. Lett. 94, 022501 (2004).

    Article  ADS  Google Scholar 

  36. B.V. Pritychenko, Phys. Lett. B 461, 322 (1999).

    Article  ADS  Google Scholar 

  37. B.V. Pritychenko, Phys. Rev. C 63, 011305(R) (2000).

    Article  ADS  Google Scholar 

  38. B.V. Pritychenko, Phys. Rev. C 63, 047308 (2001).

    Article  ADS  Google Scholar 

  39. B.V. Pritychenko, Phys. Rev. C 65, 061304(R) (2002).

    Article  ADS  Google Scholar 

  40. B.V. Pritychenko, Phys. Rev. C 66, 024325 (2002).

    Article  ADS  Google Scholar 

  41. V. Chisté, Phys. Lett. B 514, 233 (2001).

    Article  ADS  Google Scholar 

  42. K. Yoneda, Phys. Lett. B 499, 233 (2001).

    Article  MathSciNet  ADS  Google Scholar 

  43. H. Iwasaki, Phys. Lett. B 522, 227 (2001).

    Article  ADS  Google Scholar 

  44. O. Niedermaier, Phys. Rev. Lett. 94, 172501 (2005).

    Article  ADS  Google Scholar 

  45. J.A. Church, Phys. Rev. C 72, 054320 (2005).

    Article  ADS  Google Scholar 

  46. V. Tripanthi, Phys. Rev. Lett. 94, 162501 (2005).

    Article  ADS  Google Scholar 

  47. H. Iwasaki, Phys. Lett. B 620, 118 (2005).

    Article  ADS  Google Scholar 

  48. M. Belleguic, Phys. Rev. C 72, 054316 (2005).

    Article  ADS  Google Scholar 

  49. N. Zeldes, T.S. Dumistrescu, H.S. Köhler, Nucl. Phys. A 399, 11 (1983).

    Article  ADS  Google Scholar 

  50. M. Bender, G. Bertsch, P.-H. Heenen, Phys. Rev. Lett. 94, 102503 (2005).

    Article  ADS  Google Scholar 

  51. D. Lunney, J.M. Pearson, C. Thibault, Rev. Mod. Phys. 75, 1021 (2003).

    Article  ADS  Google Scholar 

  52. D. Lunney, G. Audi, H.-J. Kluge (Editors), Proceedings of the 2nd Euroconference on Atomic Physics at Accelerators: Mass Spectrometry (APAC2000), Cargèse, France, Hyperfine Interact. 132 (2001).

  53. E. Kugler, Hyperfine Interact. 129, 23 (2000).

    Article  Google Scholar 

  54. V.I. Mishin, Nucl. Instrum. Methods B 73, 550 (1993).

    Article  ADS  Google Scholar 

  55. U. Koester, Nucl. Phys. A 701, 441 (2002).

    Article  ADS  Google Scholar 

  56. A. Coc, Nucl. Instrum. Methods A 305, 143 (1991).

    Article  ADS  Google Scholar 

  57. D. Lunney, Hyperfine Interact. 132, 299 (2001).

    Google Scholar 

  58. C. Monsanglant, Doctoral Thesis, Université Paris-Sud, Orsay (2000)

  59. M. de Saint Simon, Phys. Scr. T 59, 406 (1995).

    ADS  Google Scholar 

  60. M.D. Lunney, Hyperfine Interact. 99, 105 (1996).

    Article  Google Scholar 

  61. A. Coc, Nucl. Instrum. Methods A 271, 512 (1988).

    Article  ADS  Google Scholar 

  62. N. Vieira, Doctoral Thesis, Université Paris VI, Paris (2002)

  63. C. Gaulard, G. Audi, C. Bachelet, D. Lunney, M. de Saint Simon, C. Thibault, N. Vieira, Nucl. Phys. A 766, 52 (2006).

    Article  ADS  Google Scholar 

  64. G. Audi, A.H. Wapstra, Nucl. Phys. A 595, 409 (1995).

    Article  ADS  Google Scholar 

  65. D.R. Goosman, C.N. Davids, D.E. Alburger, Phys. Rev. C 8, 1331 (1973).

    Article  ADS  Google Scholar 

  66. D.K. Scott, Phys. Rev. Lett. 33, 1343 (1974).

    Article  ADS  Google Scholar 

  67. I. Paschopoulos, Phys. Rev. C 18, 1277 (1978).

    Article  ADS  Google Scholar 

  68. A.D. Panagiotou, Z. Phys. A 302, 117 (1981).

    Article  Google Scholar 

  69. L.K. Fifield, Nucl. Phys. A 437, 141 (1985).

    Article  ADS  Google Scholar 

  70. D.J. Vieira, Phys. Rev. Lett. 57, 3253 (1986).

    Article  ADS  Google Scholar 

  71. X.G. Zhou, Phys. Lett. B 260, 285 (1991).

    Article  ADS  Google Scholar 

  72. A. Gillibert, Phys. Lett. B 192, 39 (1987).

    Article  ADS  Google Scholar 

  73. N.A. Orr, Phys. Lett. B 258, 29 (1991)

    Article  ADS  Google Scholar 

  74. G. Audi, A.H. Waptstra, C. Thibault, Nucl. Phys. A 729, 337 (2003)

    Article  ADS  Google Scholar 

  75. P. Möller, J.R. Nix, W.D. Myers, W.J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995).

    Article  ADS  Google Scholar 

  76. J. Duflo, A.P. Zuker, Phys. Rev. C 52, R1 (1995).

  77. H. Koura, M. Uno, T. Tachibana, M. Yamada, Nucl. Phys. A 674, 47 (2000).

    Article  ADS  Google Scholar 

  78. S. Goriely, M. Samyn, J.M. Pearson, P.-H. Heenen, F. Tondeur, Phys. Rev. C 66, 024326 (2002).

    Article  ADS  Google Scholar 

  79. G. Audi, A.H. Wapstra, private communication (2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Lunney.

Additional information

J. Äystö

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lunney, D., Audi, G., Gaulard, C. et al. High-precision masses of 29-33Mg and the N = 20 shell “closure”. Eur. Phys. J. A 28, 129–138 (2006). https://doi.org/10.1140/epja/i2005-10281-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2005-10281-1

PACS.

Navigation