Skip to main content
Log in

Mass measurements of neutron-deficient nuclides close to A = 80 with a Penning trap

  • Nuclear Structure and Reactions
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

The masses of 80, 81, 82, 83Y, 83, 84, 85, 86, 88Zr and 85, 86, 87, 88Nb have been measured with a typical precision of 7keV by using the Penning trap setup at IGISOL. The mass of 84Zr has been measured for the first time. These precise mass measurements have improved Sp and QEC values for astrophysically important nuclides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.K. Wallace, S.E. Woosley, Astrophys. J. Suppl. 45, 389 (1981).

    Article  ADS  Google Scholar 

  2. H. Schatz, Phys. Rep. 294, 167 (1998).

    Article  ADS  Google Scholar 

  3. H. Schatz, Phys. Rev. Lett. 86, 3471 (2001).

    Article  ADS  Google Scholar 

  4. H. Schatz, K.E. Rehm, to be published in Nucl. Phys. A.

  5. Yu.N. Novikov, Eur. Phys. J. A 11, 257 (2001).

    Article  ADS  Google Scholar 

  6. A. Kankainen, Eur. Phys. J. A 25, 355 (2005).

    Article  ADS  Google Scholar 

  7. P. Dendooven, Nucl. Instrum. Methods Phys. Res. A 408, 530 (1998).

    Article  Google Scholar 

  8. J. Äystö, Nucl. Phys. A 693, 477 (2001).

    Article  ADS  Google Scholar 

  9. A. Nieminen, Nucl. Instrum. Methods Phys. Res. A 469, 244 (2001).

    Article  ADS  Google Scholar 

  10. V.S. Kolhinen, Nucl. Instrum. Methods Phys. Res. A 528, 776 (2004).

    Article  ADS  Google Scholar 

  11. M. König, Int. J. Mass Spectrom. Ion. Proc. 142, 95 (1995).

    Article  Google Scholar 

  12. S. Rinta-Antila, Phys. Rev. C 70, 011301 (2004).

    Article  ADS  Google Scholar 

  13. K. Blaum, J. Phys. B: At. Mol. Opt. Phys. 36, 921 (2003).

    Article  ADS  Google Scholar 

  14. G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003).

    Article  ADS  Google Scholar 

  15. A.H. Wapstra, G. Audi, C. Thibault, Nucl. Phys. A 729, 129 (2003).

    Article  ADS  Google Scholar 

  16. G. Audi, Nucl. Phys. A 729, 3 (2003).

    Article  ADS  Google Scholar 

  17. J. Huikari, Nucl. Instrum. Methods Phys. Res. B 222, 632 (2004).

    Article  ADS  Google Scholar 

  18. C.J. Lister, Phys. Rev. C 24, 260 (1981).

    Article  ADS  Google Scholar 

  19. S. Della Negra, Z. Phys. A 307, 305 (1982).

    Article  Google Scholar 

  20. M. Shibata, J. Phys. Soc. Jpn. 65, 3172 (1996).

    Article  Google Scholar 

  21. S. Issmer, Eur. Phys. J. A 2, 173 (1998).

    Article  ADS  Google Scholar 

  22. C.J. Barton, Phys. Rev. C 67, 034310 (2003).

    Article  ADS  Google Scholar 

  23. A.S. Lalleman, Hyperfine Interact. 132, 315 (2001).

    Article  ADS  Google Scholar 

  24. M. Chartier, J. Phys. G 31, S1771 (2005).

  25. C. Deprun, Z. Phys. A 295, 103 (1980).

    Article  Google Scholar 

  26. E. Hagberg, Nucl. Phys. A 395, 152 (1983).

    Article  ADS  Google Scholar 

  27. S. Kato, Phys. Rev. C 41, 1276 (1990).

    Article  ADS  Google Scholar 

  28. J.B. Ball, R.L. Auble, P.G. Roos, Phys. Rev. C 4, 196 (1971).

    Article  ADS  Google Scholar 

  29. T. Kuroyanagi, Nucl. Phys. A 484, 264 (1988).

    Article  ADS  Google Scholar 

  30. A. Jungclaus, Z. Phys. A 352, 3 (1995).

    Article  Google Scholar 

  31. S.K. Tandel, Phys. Rev. C 65, 054307 (2002).

    Article  ADS  Google Scholar 

  32. M. Oinonen, Nucl. Instrum. Methods Phys. Res. A 416, 485 (1998).

    Article  Google Scholar 

  33. S. Della Negra, D. Jacquet, Y. Le Beyec, Z. Phys. A 308, 243 (1982).

    Article  Google Scholar 

  34. E.K. Warburton, Phys. Rev. C 31, 1211 (1985).

    Article  ADS  Google Scholar 

  35. T. Shizuma, Z. Phys. A 348, 25 (1994).

    Article  Google Scholar 

  36. B. Singh, Nucl. Data Sheets 94, 1 (2001).

    Article  ADS  Google Scholar 

  37. K. Oxorn, S.K. Mark, Z. Phys. A 316, 97 (1984).

    Article  Google Scholar 

  38. M. Matos, Proceedings of the EXON-04 Conference, Peterhof, July 2005 (World Scientific, Singapore, 2005) p. 90.

  39. U. Hager, Phys. Rev. Lett. 96, 042504 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kankainen.

Additional information

D. Guerreau

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kankainen, A., Batist, L., Eliseev, S.A. et al. Mass measurements of neutron-deficient nuclides close to A = 80 with a Penning trap. Eur. Phys. J. A 29, 271–280 (2006). https://doi.org/10.1140/epja/i2006-10088-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2006-10088-6

PACS.

Navigation