Skip to main content
Log in

Self-consistent relativistic QRPA studies of soft modes and spin-isospin resonances in unstable nuclei

  • ENAM 2004
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

The excitation phenomena in unstable nuclei are investigated in the framework of the relativistic quasiparticle random-phase approximation (RQRPA) in the relativistic Hartree-Bogoliubov model (RHB) which is extended to include effective interactions with explicit density-dependent meson-nucleon couplings. The properties of the pygmy dipole resonance (PDR) are examined in 132Sn and within isotopic chains, showing that already at moderate proton-neutron asymmetry the PDR peak energy is located above the neutron emission threshold. A method is suggested for determining the size of the neutron skin within an isotopic chain, based on the measurement of the excitation energies of the Gamow-Teller resonance relative to the isobaric analog state. In addition, for the first time the relativistic RHB + RQRPA model, with tensor ω meson-nucleon couplings, is employed in calculations of β-decay half-lives of nuclei of the relevance for the r-process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Suzuki, Prog. Theor. Phys. 83, 180 (1990).

    Google Scholar 

  2. J. Chambers, Phys. Rev. C 50, R2671 (1994).

  3. M. Matsuo, Prog. Theor. Phys. Suppl. 146, 110 (2002).

    Google Scholar 

  4. A. Leistenschneider, Phys. Rev. Lett. 86, 5442 (2001).

    Article  PubMed  Google Scholar 

  5. N. Ryezayeva, Phys. Rev. Lett. 89, 272502 (2002).

    Article  PubMed  Google Scholar 

  6. J. Enders, Nucl. Phys. A 724, 243 (2003).

    Article  Google Scholar 

  7. A. Richter, Nucl. Phys. A 731, 59 (2004).

    Article  Google Scholar 

  8. A. Zilges, Phys. Lett. B 542, 43 (2002).

    Article  Google Scholar 

  9. T. Hartmann, Nucl. Phys. A 719, 308c (2003).

    Article  Google Scholar 

  10. A. Zilges, Nucl. Phys. A 731, 249 (2004).

    Article  Google Scholar 

  11. N. Tsoneva, H. Lenske, Ch. Stoyanov, Phys. Lett. B 586, 213 (2004).

    Article  Google Scholar 

  12. H. Lenske, C.M. Keil, N. Tsoneva, Prog. Part. Nucl. Phys. 53, 153 (2004).

    Article  Google Scholar 

  13. S. Goriely, Phys. Lett. B 436, 10 (1998).

    Article  Google Scholar 

  14. S. Goriely, E. Khan, Nucl. Phys. A 706, 217 (2002).

    Article  Google Scholar 

  15. J. Enders, T. Guhr, A. Heine, P. von Neumann-Cosel, V.Y. Ponomarev, A. Richter, J. Wambach, Nucl. Phys. A 741, 3 (2004).

    Article  Google Scholar 

  16. D. Sarchi, P.F. Bortignon, G. Colo, Phys. Lett. B 601, 27 (2004).

    Article  Google Scholar 

  17. J.P. Adams, B. Castel, H. Sagawa, Phys. Rev. C 53, 1016 (1996).

    Article  Google Scholar 

  18. D. Vretenar, N. Paar, P. Ring, G.A. Lalazissis, Nucl. Phys. A 692, 496 (2001).

    Article  Google Scholar 

  19. N. Paar, P. Ring, T. Nikši\’ c, D. Vretenar, Phys. Rev. C 67, 034312 (2003).

    Article  Google Scholar 

  20. K. Langanke, G. Mart\’ inez-Pinedo, Rev. Mod. Phys. 75, 819 (2003).

    Article  Google Scholar 

  21. N. Michel, J. Okolowicz, F. Nowacki, M. Ploszajczak, Nucl. Phys. A 703, 202 (2002).

    Article  Google Scholar 

  22. E. Caurier, P. Navr\’ atil, W.E. Ormand, J.P. Vary, Phys. Rev. C 66, 024314 (2002).

    Article  Google Scholar 

  23. J. Engel, M. Bender, J. Dobaczewski, W. Nazarewicz, R. Surman, Phys. Rev. C 60, 014302 (1999).

    Article  Google Scholar 

  24. I.N. Borzov, Phys. Rev. C 67, 025802 (2003).

    Article  Google Scholar 

  25. J.F. Berger, M. Girod, D. Gogny, Nucl. Phys. A 428, 25c (1984).

    Google Scholar 

  26. T. Nikši\’ c, Phys. Rev. C 66, 024306 (2002).

    Article  Google Scholar 

  27. H. Sagawa, T. Suzuki, Nucl. Phys. A 687, 111c (2001).

    Article  Google Scholar 

  28. G. Audi, A.H. Wapstra, Nucl. Phys. A 595, 409 (1995).

    Article  Google Scholar 

  29. N. Paar, T. Nikši\’ c, D. Vretenar, P. Ring, Phys. Lett. B 606, 288 (2005).

    Article  Google Scholar 

  30. D. Vretenar, N. Paar, T. Nikši\’ c, P. Ring, Phys. Rev. Lett. 91, 262502 (2003).

    Article  PubMed  Google Scholar 

  31. N. Paar, T. Nikši\’ c, D. Vretenar, P. Ring, Phys. Rev. C 69, 054303 (2004).

    Article  Google Scholar 

  32. K. Pham, Phys. Rev. C 51, 526 (1995).

    Article  Google Scholar 

  33. A. Krasznahorkay, Phys. Rev. Lett. 82, 3216 (1999).

    Article  Google Scholar 

  34. NUBASE database, http://csnwww.in2p3.fr/amdc.

  35. I. Dillmann, Phys. Rev. Lett. 91, 162503 (2003).

    Article  PubMed  Google Scholar 

  36. G. Martinez-Pinedo, K. Langanke, Phys. Rev. Lett. 83, 4502 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Paar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paar, N., Nikšić, T., Marketin, T. et al. Self-consistent relativistic QRPA studies of soft modes and spin-isospin resonances in unstable nuclei. Eur. Phys. J. A 25 (Suppl 1), 531–534 (2005). https://doi.org/10.1140/epjad/i2005-06-057-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjad/i2005-06-057-5

PACS.

Navigation