Elsevier

Nuclear Data Sheets

Volume 106, Issue 2, October 2005, Pages 251-366
Nuclear Data Sheets

Nuclear Data Sheets for A = 266–294

https://doi.org/10.1016/j.nds.2005.10.005Get rights and content

Abstract

The 2000 Nuclear Data Sheets for A = 267–293 (2000Fi12) and part (A = 266) of the 2001 Nuclear Data Sheets for 250,254,258,262,266 (2001Ak11) have been revised using experimental decay and reaction data received by August 12, 2005.

References (158)

  • V.E. Viola et al.

    J. Inorg. Nucl. Chem.

    (1966)
  • J.J. Wesolowski et al.

    Phys. Lett. B

    (1969)
  • D.C. Aumann et al.

    Nucl. Instrum. Methods

    (1974)
  • G. Mullen et al.

    Nucl. Instrum. Methods

    (1975)
  • H.W. Gaggeler et al.

    Nucl. Instrum. Methods Phys. Res. A

    (1991)
  • K.E. Gregorich

    Nucl. Instrum. Methods Phys. Res. A

    (1991)
  • R.C. Barber et al.

    Prog. Part. Nucl. Phys.

    (1992)
  • A.V. Yeremin et al.

    Nucl. Instrum. Methods Phys. Res. A

    (1994)
  • P. Moller et al.

    At. Data Nucl. Data Tables

    (1995)
  • K.W. Scheller et al.

    Nucl. Phys. A

    (1995)
  • W.D. Myers et al.

    Nucl. Phys. A

    (1996)
  • P. Moller et al.

    At. Data Nucl. Data Tables

    (1997)
  • A.V. Yeremin et al.

    Nucl. Instrum. Methods Phys. Res. B

    (1997)
  • A. Artna-Cohen

    Nucl. Data Sheets

    (1999)
  • R.B. Firestone et al.

    Nucl. Data Sheets

    (2000)
  • Y.A. Akovali

    Nucl. Data Sheets

    (2001)
  • I.M. Band et al.

    At. Data Nucl. Data Tables

    (2002)
  • Ch.E. Dullmann et al.

    Nucl. Instrum. Methods Phys. Res. A

    (2002)
  • V.M. Lobashev

    Prog. Part. Nucl. Phys.

    (2002)
  • G. Igo

    Phys. Rev.

    (1959)
  • D.N. Schramm et al.

    Nature (London)

    (1971)
  • F.H. Geisler et al.

    Nature (London)

    (1973)
  • K. Behringer et al.

    Phys. Rev. C

    (1974)
  • W. Stephens et al.

    Phys. Rev. C

    (1980)
  • G. Munzenberg et al.

    Z. Phys. A

    (1982)
  • S. Mordechai et al.

    Phys. Rev. C

    (1984)
  • G. Munzenberg et al.

    Z. Phys. A

    (1984)
  • Yu.Ts. Oganessian et al.

    Radiochim. Acta

    (1984)
  • K.-H. Schmidt et al.

    Z. Phys. A

    (1984)
  • I. Zvara et al.

    Radiokhimiya

    (1984)

    Sov. Radiochem.

    (1984)
  • D.C. Hoffman et al.

    Phys. Rev. C

    (1985)
  • G. Munzenberg et al.

    Z. Phys. A

    (1987)
  • M. Schadel, W. Bruchle, E. Jager, K. Summerer, E.K. Hulet, J.F. Wild, R.W. Lougheed, R.J. Dougan, K.J. Moody –...
  • G. Munzenberg et al.

    Z. Phys. A

    (1988)
  • G. Munzenberg

    Nucl. Phys. A

    (1989)
  • Yu.Ts. Oganessian et al.
  • D.C. Hoffman et al.

    Phys. Rev. C

    (1990)
  • Yu.A. Lazarev et al.
  • Yu.A. Lazarev et al.

    Phys. Rev. Lett.

    (1994)
  • A. Ghiorso et al.

    Nucl. Phys. A

    (1995)
  • A. Ghiorso et al.

    Phys. Rev. C

    (1995)
  • S. Hofmann et al.

    Z. Phys. A

    (1995)
  • S. Hofmann et al.

    Z. Phys. A

    (1995)
  • D.C. Hoffman et al.

    Radiochim. Acta

    (1995)
  • Yu.A. Lazarev et al.

    Phys. Rev. Lett.

    (1995)
  • M. Schadel et al.

    Radiochim. Acta

    (1995)
  • R. Smolanczuk et al.

    Phys. Rev. C

    (1995)
  • R. Smolanczuk et al.
  • H. Heiselberg et al.

    Phys. Rev. C

    (1996)
  • S. Hofmann et al.

    Z. Phys. A

    (1996)
  • Cited by (49)

    • Predictions on the modes of decay of even Z superheavy isotopes within the range 104≤Z≤136

      2018, Atomic Data and Nuclear Data Tables
      Citation Excerpt :

      Various phenomenological and microscopic models such as fission model [27], cluster model [28], generalized liquid drop model (GLDM) [29], unified model for alpha-decay and alpha-capture (UMADAC) [30] have been employed to study the process of alpha decay [30–36]. Simple empirical relations and various analytical formulae [37–41] are also available for determining the alpha decay half-lives. Earlier studies on spontaneous radioactive processes treat alpha decay and spontaneous fission (SF) as two completely different mechanisms while considering the nuclear structure properties.

    • Quantum design using a multiple internal reflections method in a study of fusion processes in the capture of alpha-particles by nuclei

      2015, Nuclear Physics A
      Citation Excerpt :

      Information about fusion in α-capture forms our understanding of interactions between the α-particles and nuclei at distances, where an important role is attributed to the formation of the nucleus from two colliding nuclear objects inside the spatial nuclear region. α–nucleus interactions have been studied most intensively in the context of the α-decay of nuclei (see experimental information [4–16], various microscopic models [17–30], macroscopic cluster models [31–44], fission models [3,46]), and the scattering of the α-particles off nuclei [47–51]. The physics of the fusion processes during α-capture has been investigated less deeply [36–39].

    View all citing articles on Scopus

    This work was performed under the auspices of the U.S. Department of Energy, Contract No. DE-AC02-98CH10886, and Brookhaven National Laboratory Contract No. 92389.

    a

    Permanent address: Manipal Academy of Higher Education, Manipal, KA 576 104, INDIA

    View full text