Skip to main content
Log in

Investigation of the neutron shell structure of the even-even isotopes 40–56Ca within the dispersive optical model

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Within the method of matching experimental data obtained in the neutron-stripping and neutron-pickup reactions on 40,42,44,46,48Ca isotopes, the single-particle energies and probabilities that neutron states are filled are obtained for the even-even calcium isotopes. These data are analyzed within the dispersive optical model, and good agreement between the calculated and experimental values of the energies of states is obtained. The dispersive optical potential is extrapolated to the region of the unstable 50,52,54,56Ca nuclei. The calculated single-particle energies of bound states in these isotopes are compared with the results of the calculations within the multiparticle shell model, the latter predicting a new magic number N = 34 for Z = 20 nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Honmu et al., Phys. Rev. C 65, 061301 (2002).

  2. I. N. Boboshin et al., Nucl. Phys. A 496, 93 (1989).

    ADS  Google Scholar 

  3. M. Matoba et al., Phys. Rev. C 48, 95 (1993).

    Article  ADS  Google Scholar 

  4. P. Doll et al., Nucl. Phys. A 263, 210 (1976).

    ADS  Google Scholar 

  5. Y. Uozumi et al., Phys. Rev. C 50, 263 (1994).

    Article  ADS  Google Scholar 

  6. F. J. Eckle et al., Nucl. Phys. A 506, 159 (1990).

    ADS  Google Scholar 

  7. P. Martin et al., Nucl. Phys. A 185, 465 (1972).

    ADS  Google Scholar 

  8. G. Brown, A. Denning, and J. G. B. Haigh, Nucl. Phys. A 225, 267 (1974).

    ADS  Google Scholar 

  9. T. A. Belote, W. E. Dorenbusch, and J. Rapaport, Nucl. Phys. A 120, 401 (1968).

    ADS  Google Scholar 

  10. W. E. Dorenbusch, T. A. Belote, and O. Hansen, Phys. Rev. 146, 734 (1966).

    Article  ADS  Google Scholar 

  11. H. Schar, D. Trautmann, and E. Baumgartner, Helv. Phys. Acta 50, 29 (1977).

    Google Scholar 

  12. J. Rapaport, W. E. Dorenbusch, and T. A. Belote, Phys. Rev. 156, 1255 (1967).

    Article  ADS  Google Scholar 

  13. J. L. Yntema, Phys. Rev. C 4, 1621 (1971).

    ADS  Google Scholar 

  14. J. H. Bjerregaard, O. Hansen, and G. R. Satchler, Phys. Rev. 160, 889 (1967).

    Article  ADS  Google Scholar 

  15. J. Rapaport, W. E. Dorenbusch, and T. A. Belote, Nucl. Phys. A 177, 307 (1971).

    ADS  Google Scholar 

  16. T. A. Belote et al., Phys. Rev. 142, 624 (1966).

    Article  ADS  Google Scholar 

  17. J. H. Bjerregaard, O. Hansen, and G. Sidenius, Phys. Rev. 138, 1097 (1965).

    Article  ADS  Google Scholar 

  18. R. A. Abegg, J. D. Hutton, and M. E. Williams-Norton, Nucl. Phys. A 303, 121 (1978).

    ADS  Google Scholar 

  19. W. D. Metz, W. D. Callender, and C. K. Bockelman, Phys. Rev. C 12, 827 (1975).

    Article  ADS  Google Scholar 

  20. J. S. Hanspal et al., Nucl. Phys. A 436, 236 (1985).

    ADS  Google Scholar 

  21. S. Fortier, E. Hourani, M. N. Rao, and S. Gales, Nucl. Phys. A 311, 324 (1978).

    ADS  Google Scholar 

  22. Y. Uozumi et al., Nucl. Phys. A 576, 123 (1994).

    ADS  Google Scholar 

  23. T. W. Burrows, Nucl. Instrum. Methods Phys. Res. A 286, 5953 (1990).

    Article  Google Scholar 

  24. S. Typel and H. H. Wolter, Nucl. Phys. A 656, 331 (1999).

    ADS  Google Scholar 

  25. M. Rashdan, Phys. Rev. C 63, 044303 (2001).

    Google Scholar 

  26. B. F. Gibson and K. J. Van Oostum, Nucl. Phys. A 90, 159 (1967).

    ADS  Google Scholar 

  27. K. Rutz et al., Nucl. Phys. A 634, 67 (1998).

    ADS  Google Scholar 

  28. M. Kleban et al., Phys. Rev. C 65, 024309 (2002).

  29. X. Campi and D. W. Sprung, Nucl. Phys. A 194, 401 (1972).

    ADS  Google Scholar 

  30. V. K. B. Kota and V. Potbhare, Nucl. Phys. A 331, 93 (1979).

    ADS  Google Scholar 

  31. C. Mahaux and R. Sartor, Nucl. Phys. A 528, 253 (1991).

    ADS  Google Scholar 

  32. L. Corradi et al., Phys. Rev. C 61, 024609 (2000).

  33. H. Koura and M. Yamada, Nucl. Phys. A 671, 96 (2000).

    ADS  Google Scholar 

  34. S. S. Volkov et al., Yad. Fiz. 52, 1339 (1990) [Sov. J. Nucl. Phys. 52, 848 (1990)].

    Google Scholar 

  35. S. Kamerdzhiev, J. Speth, and G. Tertychny, Nucl. Phys. A 624, 328 (1997).

    ADS  Google Scholar 

  36. C. H. Johnson and C. Mahaux, Phys. Rev. C 38, 2589 (1988).

    ADS  Google Scholar 

  37. D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972).

    Article  ADS  Google Scholar 

  38. J. W. Enlers and S. A. Moszkowski, Phys. Rev. C 6, 217 (1972).

    ADS  Google Scholar 

  39. B. A. Brown, Phys. Rev. C 58, 220 (1998).

    Article  ADS  Google Scholar 

  40. V. A. Khodel and E. E. Saperstein, Phys. Rep. 92, 183 (1982).

    Article  ADS  Google Scholar 

  41. D. Vretenar, T. Niksić, and P. Ring, Phys. Rev. C 65, 024321 (2002).

    Google Scholar 

  42. P. Von Neumann-Cosel et al., Nucl. Phys. A 516, 385 (1990).

    ADS  Google Scholar 

  43. E. A. Romanovsky et al., Yad. Fiz. 63, 468 (2000) [Phys. At. Nucl. 63, 399 (2000)].

    Google Scholar 

  44. C. Mahaux and R. Sartor, Nucl. Phys. A 484, 205 (1988).

    ADS  Google Scholar 

  45. E. L. Hjort et al., Phys. Rev. C 50, 275 (1994).

    Article  ADS  Google Scholar 

  46. O. V. Bespalova et al., Yad. Fiz. 66, 673 (2003) [Phys. At. Nucl. 66, 644 (2003)].

    Google Scholar 

  47. R. L. Varner et al., Phys. Rep. 201, 57 (1991).

    Article  ADS  Google Scholar 

  48. R. F. Carlson, At. Data Nucl. Data Tables 63, 93 (1996).

    Article  ADS  Google Scholar 

  49. E. A. Romanovsky et al., Yad. Fiz. 61, 37 (1998) [Phys. At. Nucl. 61, 32 (1998)].

    Google Scholar 

  50. O. V. Bespalova et al., Izv. Akad. Nauk, Ser. Fiz. 67, 62 (2003).

    Google Scholar 

  51. A. J. Koning and J. P. Delaroche, Nucl. Phys. A 713, 231 (2003).

    ADS  Google Scholar 

  52. C. Mahaux and R. Sartor, Adv. Nucl. Phys. 20, 1 (1991).

    ADS  Google Scholar 

  53. Nuclear Wallet Cards (Jan. 2000).

  54. H. Sagawa and S. Yoshida, Nucl. Phys. A 688, 755 (2001).

    ADS  Google Scholar 

  55. F. Hofmann, C. M. Keil, and H. Lenske, Phys. Rev. C 64, 034314 (2001).

    Google Scholar 

  56. N. Kaiser, Nucl. Phys. A 720, 157 (2003).

    ADS  Google Scholar 

  57. V. A. Chepurnov, Yad. Fiz. 6, 955 (1967) [Sov. J. Nucl. Phys. 6, 696 (1967)].

    Google Scholar 

  58. B. A. Brown and W. A. Richter, Phys. Rev. C 58, 2099 (1998).

    Article  ADS  Google Scholar 

  59. J. Dobaczewski et al., Phys. Rev. Lett. 72, 981 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Yadernaya Fizika, Vol. 68, No. 2, 2005, pp. 216–232.

Original Russian Text Copyright © 2005 by Bespalova, Boboshin, Varlamov, Ermakova, Ishkhanov, Romanovsky, Spasskaya, Timokhina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bespalova, O.V., Boboshin, I.N., Varlamov, V.V. et al. Investigation of the neutron shell structure of the even-even isotopes 40–56Ca within the dispersive optical model. Phys. Atom. Nuclei 68, 191–207 (2005). https://doi.org/10.1134/1.1866375

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1866375

Keywords

Navigation