Skip to main content
Log in

Equivalence between local Fermi gas and shell models in inclusive muon capture from nuclei

  • Original Article
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

An Erratum to this article was published on 01 November 2005

Abstract.

Motivated by recent studies of inclusive neutrino nucleus processes and muon capture within a correlated local Fermi gas model (LFG), we discuss the relevance of nuclear finite-size effects in these reactions at low energy, in particular for muon capture. To disentangle these effects from others coming from the reaction dynamics we employ here a simple uncorrelated shell model that embodies the typical finite-size content of the problem. The integrated decay widths of muon atoms calculated with this shell model are then compared for several nuclei with those obtained within the uncorrelated LFG, using in both models exactly the same theoretical ingredients and parameters. We find that the two predictions are in quite good agreement, within 1-7%, when the shell model density and the correct energy balance is used as input in the LFG calculation. The present study indicates that, despite the low excitation energies involved in the reaction, integrated inclusive observables, like the total muon capture width, are quite independent of the fine details of the nuclear wave functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Nieves, J.E. Amaro, M. Valverde, Phys. Rev. C 70, 055503 (2004).

    Article  ADS  Google Scholar 

  2. J. Nieves, J.E. Amaro, M. Valverde, Nucl. Phys. B (Proc. Suppl.) 139, 195 (2005).

    Article  ADS  Google Scholar 

  3. A. Gil, J. Nieves, E. Oset, Nucl. Phys. A 627, 543

  4. H.C. Chiang, E. Oset, P. Fernández de Córdoba, Nucl. Phys. A 510, 591 (1990).

    ADS  Google Scholar 

  5. N.C. Mukhopadhyay, H.C. Chiang, S.K. Singh, E. Oset, Phys. Lett. B 434, 7 (1998).

    ADS  Google Scholar 

  6. S.K. Singh, E.Oset, Phys. Rev. C 48, 1246 (1993).

    ADS  Google Scholar 

  7. T.S. Kosmas, E. Oset, Phys. Rev. C 53, 1409 (1996).

    Article  ADS  Google Scholar 

  8. S.K. Singh, N.C. Mukhopadhyay, E. Oset, Phys. Rev. C 57, 2687 (1998).

    ADS  Google Scholar 

  9. See, for instance, talks at The Third Workshop on Neutrino-Nucleus Interactions in the Few GeV Region (NuInt04), Gran Sasso, 2004, http://nuint04.lngs. infn.it.

  10. Y. Fukuda, Phys. Rev. Lett. 81, 1562 (1998).

    ADS  Google Scholar 

  11. K. Zuber, Phys. Rep. 305, 6 (1998).

    Article  Google Scholar 

  12. D.A. Krakauer, Phys. Rev. C 45, 2450 (1992).

    Article  ADS  Google Scholar 

  13. B.E. Bodmann, Phys. Lett. B 332, 251 (1994).

    ADS  Google Scholar 

  14. L.B. Auerbach, Phys. Rev. C 64, 065501 (2001).

    Article  ADS  Google Scholar 

  15. M. Albert, Phys. Rev. C 51, 1065 (1995).

    Article  ADS  Google Scholar 

  16. C. Athanassopoulos, Phys. Rev. C 56, 2806 (1997).

    Article  ADS  Google Scholar 

  17. L.B. Auerbach, Phys. Rev. C 66, 015501 (2002).

    Article  ADS  Google Scholar 

  18. J.E. Amaro, A.M. Lallena, J. Nieves, Nucl. Phys. A 623, 529 (1997)

    ADS  Google Scholar 

  19. H.C. Chiang , Nucl. Phys. A 510, 573 (1990)

    ADS  Google Scholar 

  20. M.B. Barbaro, A. De Pace, T.W. Donnelly, A. Molinari, M.J. Musolf, Phys. Rev. C 54, 1954 (1996).

    Article  ADS  Google Scholar 

  21. D.F. Measday, Phys. Rep. 354, 243 (2001).

    Article  ADS  Google Scholar 

  22. E. Kolbe, K. Langanke, P. Vogel, Phys. Rev. C 50, 2576 (1994).

    Article  ADS  Google Scholar 

  23. E. Kolbe, K. Langanke, P. Vogel, Phys. Rev. C 62 055502 (2000).

    Google Scholar 

  24. E. Kolbe, K. Langanke, P. Vogel, Nucl. Phys. A 652, 91 (1999).

    ADS  Google Scholar 

  25. A.C. Hayes, I.S. Towner, Phys. Rev. C 61, 044603 (2000).

    Article  ADS  Google Scholar 

  26. C. Volpe, N. Auerbach, G. Colo, T. Suzuki, N. Van Giai, Phys. Rev. C 62, 015501 (2000).

    Article  ADS  Google Scholar 

  27. F. Krmpotić, A. Samana, A. Mariano, Phys. Rev. C 71, 044139 (2005).

    Google Scholar 

  28. C. Maieron, M.C. Martinez, J.A. Caballero, J.M. Udias, Phys. Rev. C 68, 048501 (2003).

    Article  ADS  Google Scholar 

  29. A. Meucci, C. Giusti, F.D. Pacati, Nucl. Phys. A 739, 277 (2004).

    ADS  Google Scholar 

  30. T. Suzuki, D.F. Measday, J.P. Roalsvig, Phys. Rev. C 35, 2212 (1987).

    Article  ADS  Google Scholar 

  31. J.D. Bjorken, S.D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, 1965).

  32. T.W. Donnelly, R.D. Peccei, Phys. Rep. 50, 1 (1979).

    Article  ADS  Google Scholar 

  33. J.E. Amaro, M.B. Barbaro, J.A. Caballero, T.W. Donnelly, A. Molinari, I. Sick, Phys. Rev. C 71, 015501 (2005).

    ADS  Google Scholar 

  34. J.E. Amaro, J.A. Caballero, T.W. Donnelly, E. Moya de Guerra, A.M. Lallena, J.M. Udias, Nucl. Phys. A 602, 263 (1996).

    ADS  Google Scholar 

  35. C. Albertus, J.E. Amaro, J. Nieves, Phys. Rev. C 67, 034604 (2003).

    Article  ADS  Google Scholar 

  36. J.E. Amaro, J.A. Caballero, T.W. Donnelly, E. Moya de Guerra, Nucl. Phys. A 611, 163 (1996).

    ADS  Google Scholar 

  37. M. Mazziotta, J.E. Amaro, F. Arias de Saavedra, Phys. Rev. C 65, 034602 (2002).

    Article  ADS  Google Scholar 

  38. R. Cenni, T.W. Donnelly, A. Molinari, Phys. Rev. C 56, 276 (1997).

    Article  ADS  Google Scholar 

  39. J.S. Dehesa, PhD Thesis, Universität Bonn (1977), unpublished.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Amaro.

Additional information

A. Molinari

An erratum to this article is available at http://dx.doi.org/10.1140/epja/i2005-10184-1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amaro, J.E., Maieron, C., Nieves, J. et al. Equivalence between local Fermi gas and shell models in inclusive muon capture from nuclei. Eur. Phys. J. A 24, 343–353 (2005). https://doi.org/10.1140/epja/i2005-10034-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2005-10034-2

PACS.

Navigation