Skip to main content

Advertisement

Log in

Relativistic Hartree-Bogoliubov description of deformed light nuclei

  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

The Relativistic Hartree-Bogoliubov model is applied in the analysis of ground-state properties of Be, B, C, N, F, Ne and Na isotopes. The model uses the NL3 effective interaction in the mean-field Lagrangian, and describes pairing correlations by the pairing part of the finite-range Gogny interaction D1S. Neutron separation energies, quadrupole deformations, nuclear matter radii, and differences in radii of proton and neutron distributions are compared with recent experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Tanihata et al. , Phys. Lett. B 206, 592 (1988).

    Google Scholar 

  2. A. Ozawa et al. , Phys. Lett. B 334, 18 (1994).

    Article  Google Scholar 

  3. T. Suzuki et al. , Phys. Rev. Lett. 75, 3241 (1995).

    Article  Google Scholar 

  4. A. Ozawa et al. , Nucl. Phys. A 608, 63 (1996).

    Article  Google Scholar 

  5. T. Suzuki et al. , Nucl. Phys. A 630, 661 (1998).

    Article  Google Scholar 

  6. T. Suzuki et al. , Nucl. Phys. A 658, 313 (1999).

    Article  Google Scholar 

  7. T. Suzuki et al. , Phys. Rev. Lett. 89, 012501 (2002).

    Article  Google Scholar 

  8. A. Ozawa et al. , Nucl. Phys. A 691, 599 (2001).

    Article  Google Scholar 

  9. A. Ozawa et al. , Nucl. Phys. A 693, 32 (2001).

    Article  Google Scholar 

  10. H. Sakurai et al. , Phys. Lett. B 448, 180 (1999).

    Article  Google Scholar 

  11. P.J. Woods, C.N. Davids, Annu. Rev. Nucl. Part. Sci. 47, 541 (1997).

    Article  Google Scholar 

  12. Y.N. Novikov et al. , Nucl. Phys. A 697, 92 (2002).

    Article  Google Scholar 

  13. A. Leistenschneider et al. , Phys. Rev. Lett. 86, 5442 (2001).

    Article  Google Scholar 

  14. L. Chulkov, Nucl. Phys. A 603, 219 (1996).

    Article  Google Scholar 

  15. J. Gómez del Campo et al. , Phys. Rev. Lett. 86, 43 (2001).

    Article  Google Scholar 

  16. J. Meng, P. Ring, Phys. Rev. Lett. 77, 3963 (1996).

    Article  Google Scholar 

  17. W. Pöschl, D. Vretenar, G.A. Lalazissis, P. Ring, Phys. Rev. Lett. 79, 3841 (1997).

    Article  Google Scholar 

  18. G.A. Lalazissis, D. Vretenar, W. Pöschl, P. Ring, Nucl. Phys. A 632, 363 (1998).

    Article  Google Scholar 

  19. G.A. Lalazissis, D. Vretenar, W. Pöschl, P. Ring, Phys. Lett. B 418, 7 (1998).

    Article  Google Scholar 

  20. G.A. Lalazissis, D. Vretenar, P. Ring, M. Stoitsov, L. Robledo, Phys. Rev. C 60, 014310 (1999).

    Article  Google Scholar 

  21. J. Meng, P. Ring, Phys. Rev. Lett. 80, 460 (1998).

    Article  Google Scholar 

  22. J. Meng, Nucl. Phys. A 654, 702c (1999).

    Article  Google Scholar 

  23. G.A. Lalazissis, D. Vretenar, P. Ring, Phys. Rev. C 57, 2294 (1998).

    Article  Google Scholar 

  24. J. Meng, Nucl. Phys. A 635, 3 (1998).

    Article  Google Scholar 

  25. J. Meng, I. Tanihata, Nucl. Phys. A 650, 176 (1999).

    Article  Google Scholar 

  26. D. Vretenar, G.A. Lalazissis, P. Ring, Phys. Rev. Lett. 82, 4595 (1999).

    Article  Google Scholar 

  27. G.A. Lalazissis, D. Vretenar, P. Ring, Nucl. Phys. A 650, 133 (1999).

    Article  Google Scholar 

  28. G.A. Lalazissis, D. Vretenar, P. Ring, Nucl. Phys. A 679, 481 (2001).

    Article  Google Scholar 

  29. G.A. Lalazissis, D. Vretenar, P. Ring, Phys. Rev. C 63, 034305 (2001).

    Article  Google Scholar 

  30. P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996).

    Article  Google Scholar 

  31. J. Boguta, A.R. Bodmer, Nucl. Phys. A 292, 413 (1977).

    Article  Google Scholar 

  32. W. Pöschl, D. Vretenar, P. Ring, Comput. Phys. Commun. 103, 217 (1997).

    Article  Google Scholar 

  33. Y.K. Gambhir, P. Ring, A. Thimet, Ann. Phys. (N.Y.) 198, 132 (1990).

    Google Scholar 

  34. M. Serra, P. Ring, Phys. Rev. C 65, 064324 (2002).

    Article  Google Scholar 

  35. G.A. Lalazissis, J. König, P. Ring, Phys. Rev. C 55, 540 (1997).

    Article  Google Scholar 

  36. J.F. Berger, M. Girod, D. Gogny, Nucl. Phys. A 428, 32 (1984).

    Google Scholar 

  37. P.-G. Reinhard, M. Rufa, J. Maruhn, W. Greiner, J. Friedrich, Z. Phys. A 323, 13 (1986).

    Google Scholar 

  38. M.M. Sharma, M.A. Nagarajan, P. Ring, Phys. Lett. B 312, 377 (1993).

    Article  Google Scholar 

  39. Y. Sugahara, H. Toki, Nucl. Phys. A 579, 557 (1994).

    Article  Google Scholar 

  40. P. Möller, J.R. Nix, W.D. Myers, W.J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995).

    Article  Google Scholar 

  41. G. Audi, A.H. Wapstra, Nucl. Phys. A 595, 409 (1995).

    Article  Google Scholar 

  42. M. Fukada et al. , Phys. Lett. B 268, 339 (1991).

    Article  Google Scholar 

  43. J.H. Kelley et al. , Phys. Rev. Lett. 74, 30 (1995).

    Article  Google Scholar 

  44. H. de Vries, C.W. de Jager, C. de Vries, At. Data Nucl. Data Tables 36, 495 (1987).

    Google Scholar 

  45. D. Bazin et al. , Phys. Rev. Lett. 74, 3569 (1995).

    Article  Google Scholar 

  46. T. Nakamura et al. , Phys. Rev. Lett. 83, 1112 (1999).

    Article  Google Scholar 

  47. R. Kanungo, I. Tanihata, A. Ozawa, Phys. Lett. B 512, 261 (2001).

    Article  Google Scholar 

  48. R. Kanungo et al. , Phys. Rev. Lett. 88, 142502 (2002).

    Article  Google Scholar 

  49. E.W. Otten, in Radii Isotope Shifts by Laser Beam Spectroscopy, edited by D.A. Bromley, Vol. 8 (Plenum, New York, 1989) p. 515.

  50. M. Keim et al. , Eur. Phys. J. 8, 31 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ring.

Additional information

Communicated by G. Orlandini

Received: 27 August 2003, Revised: 12 March 2004, Published online: 19 October 2004

PACS:

21.60.Jz Hartree-Fock and random-phase approximations - 21.10.Gv Mass and neutron distributions - 27.20. + n \(6 \leq A \leq 19\) - 27.30. + t \(20 \leq A \leq 38\)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lalazissis, G.A., Vretenar, D. & Ring, P. Relativistic Hartree-Bogoliubov description of deformed light nuclei. Eur. Phys. J. A 22, 37–45 (2004). https://doi.org/10.1140/epja/i2003-10227-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2003-10227-7

Keywords

Navigation