Skip to main content
Log in

Direct mass measurements of neutron-deficient xenon isotopes using the ISOLTRAP mass spectrometer

  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

The masses of the noble-gas Xe isotopes with 114≤A≤123 have been directly measured for the first time. The experiments were carried out with the ISOLTRAP triple trap spectrometer at the on-line mass separator ISOLDE/CERN. A mass resolving power of the Penning trap spectrometer of mm of close to a million was chosen resulting in an accuracy of δm ⩽ 13 keV for all investigated isotopes. Conflicts with existing, indirectly obtained, mass data by several standard deviations were found and are discussed. An atomic mass evaluation has been performed and the results are compared to information from laser spectroscopy experiments and to recent calculations employing an interacting boson model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Iachello, A. Arima, The Interacting Boson Model (Cambridge University Press, Cambridge, 1987).

  2. S. Schwarz, Nucl. Phys. A 693, 533 (2001).

    Article  Google Scholar 

  3. H. Raimbault-Hartmann, Nucl. Instrum. Methods B 126, 378 (1997).

    Google Scholar 

  4. G. Bollen, Nucl. Instrum. Methods A 368, 675 (1996).

    Google Scholar 

  5. F. Herfurth, Nucl. Instrum. Methods A 469, 254 (2001).

    Google Scholar 

  6. E. Kugler, Hyperfine Interact. 129, 23 (2000).

    Article  Google Scholar 

  7. G. Savard, Phys. Lett. A 158, 247 (1991).

    Article  Google Scholar 

  8. G. Gräff, H. Kalinowski, J. Traut, Z. Phys. A 297, 35 (1980).

    Google Scholar 

  9. K. Blaum, Eur. Phys. J. A 15, 245 (2002).

    Google Scholar 

  10. M. König, Int. J. Mass. Spectrom. Ion. Processes 142, 95 (1995).

    Article  Google Scholar 

  11. G. Bollen, Nucl. Phys. A 693, 3 (2001).

    Article  Google Scholar 

  12. E. Kugler, Nucl. Instrum. Methods B 70, 41 (1992).

    Google Scholar 

  13. M.P. Bradley, Phys. Rev. Lett. 83, 4510 (1999).

    Article  Google Scholar 

  14. A. Kellerbauer, Eur. Phys. J. D 22, 53 (2003).

    Google Scholar 

  15. G. Bollen, Phys. Rev. C 46, R2140 (1992).

  16. D. Beck, Nucl. Instrum. Methods B 126, 374 (1997).

    Google Scholar 

  17. G. Audi, A.H. Wapstra, Nucl. Phys. A 595, 409 (1995).

    Article  Google Scholar 

  18. G. Audi, Ncul. Phys. A 729, 1 (2003).

    Google Scholar 

  19. W. Borchers, PhD Thesis, University of Mainz, 1989.

  20. P. Möller, At. Data Nucl. Data Tables 59, 185 (1995).

    Article  Google Scholar 

  21. T.R. Werner, J. Dudek, At. Data Nucl. Data Tables 54, 1 (1995).

    Article  Google Scholar 

  22. P.F. Mantinca, W.B. Walters, Phys. Rev. C 53, R2586 (1996).

  23. R. Fossion, Nucl. Phys. A 697, 703 (2002).

    Article  Google Scholar 

  24. F. Herfurth, Eur. Phys. J. A 15, 17 (2002).

    Google Scholar 

  25. H.B. Mathur, Phys. Rev. A 96, 126 (1975).

    Google Scholar 

  26. R.B. Moore, Bull. Am. Phys. Soc., 68 (1960).

  27. L. Weestgard, Z. Phys. A 275, 127 (1975).

    Google Scholar 

  28. K. Sofia, Phys. Rev. C 24, 1615 (1981).

    Article  Google Scholar 

  29. R.F. Parry, PhD Thesis, University of California at Berkeley, 1983.

  30. G.D. Alkazov, Z. Phys. A 344, 425 (1993).

    Google Scholar 

  31. E. Beck, Yellow Report CERN 70-30, Vol. 1, p. 353, 1970, unpublished.

  32. F. Münnich, Nucl. Phys. A 224, 437 (1974).

    Article  Google Scholar 

  33. A. Wapstra, private communication.

  34. T. Batsch, Yellow Report CERN 76-33, Vol. 1, p. 106, 1976, unpublished.

  35. J.M. D’Auria, Yellow Report CERN 76-33, Vol. 1, p. 101, 1976, unpublished.

  36. P. Hornshoj, Nucl. Phys. A 187, 599 (1972).

    Article  Google Scholar 

  37. R.S. Lee, Phys. Rev. C 32, 277 (1985).

    Article  Google Scholar 

  38. J.M. D’Auria, Nucl. Phys. A 301, 397 (1978).

    Article  Google Scholar 

  39. G.M. Gowdy, Phys. Rev. C 13, 1601 (1976).

    Article  Google Scholar 

  40. D.D. Bogdanov, Phys. Lett. A 71, 67 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to J. Dilling.

Additional information

J. Äystö

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dilling, J., Herfurth, F., Kellerbauer, A. et al. Direct mass measurements of neutron-deficient xenon isotopes using the ISOLTRAP mass spectrometer. Eur. Phys. J. A 22, 163–171 (2004). https://doi.org/10.1140/epja/i2004-10015-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2004-10015-y

Keywords

Navigation