Skip to main content
Log in

Fission barriers of heavy nuclei within a microscopic approach

  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

The fission barriers of twenty-six isotopes of Thorium, Uranium, Plutonium, Californium, Fermium and Nobelium have been microscopically calculated up to and beyond the second saddle point within a constrained Hartree-Fock plus pairing approach. The Skyrme density-dependent effective force in its SkM* parametrization --rather well suited to the description of fission barriers-- has been used in the particle-hole channel, whereas the usual HF plus BCS formalism with either a seniority force or a delta force has been implemented to treat pairing correlations. The energy correction due to the rotational zero-point motion has been approximately taken into account and the effects of triaxial and reflection asymmetric deformations have been investigated. When known, the experimental fission barrier heights are reproduced within about 1-2MeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.M. Strutinsky, Nucl. Phys. A 95, 420 (1967); 122, 1 (1968).

    Article  Google Scholar 

  2. P. Möller, J.R. Nix, in Proceedings of the IAEA Symposium on Physics and Chemistry of Fission, Rochester, 1973, Vol. I (IAEA, Vienna, 1974) p. 103.

  3. P. Möller, D.G. Madland, A.J. Sierk, A. Iwamoto, Nature 409, 785 (2001).

    Article  Google Scholar 

  4. J. Maruhn, W. Greiner, D. Drechsel, in Proceedings of the IAEA Symposium on Physics and Chemistry of Fission, Rochester, 1973, Vol. I (IAEA, Vienna, 1974) p. 569.

  5. M. Brack, J. Damgaard, A.S. Jensen, H.C. Pauli, V.M. Strutinsky, C.W. Wong, Rev. Mod. Phys. 44, 320 (1972).

    Article  Google Scholar 

  6. V.V. Pashkevich, Nucl. Phys. A 133, 400 (1969).

    Article  Google Scholar 

  7. S.E. Larsson, I. Ragnarsson, S.G. Nilsson, Phys. Lett. B 38, 269 (1972).

    Article  Google Scholar 

  8. U. Götz, H.C. Pauli, K. Junker, Phys. Lett. B 39, 436 (1972).

    Article  Google Scholar 

  9. V.V. Pashkevich, in Proceedings of the 15thDivisional Conference on Low-Energy Nuclear Dynamics, St. Petersburg, Russia, 1995 (World Scientific, Singapore, 1995) p. 161.

  10. H. Flocard, P. Quentin, D. Vautherin, M. Vénéroni, A.K. Kerman, Nucl. Phys. A 231, 176 (1974).

    Article  Google Scholar 

  11. J. Bartel, P. Quentin, M. Brack, C. Guet, H.-B. Håkansson, Nucl. Phys. A 386, 79 (1982).

    Article  Google Scholar 

  12. J.-F. Berger, M. Girod, D. Gogny, Nucl. Phys. A 502, 85c (1989).

    Article  Google Scholar 

  13. H. Goutte, J.F. Berger, private communication.

  14. J.H. Huizenga, R. Vandenbosch, in Nuclear Fission (Academic Press, New York, 1973).

  15. S. Bjørnholm, J. Lynn, Rev. Mod. Phys. 52, 725 (1980).

    Article  Google Scholar 

  16. H. Weigmann, in The Nuclear Fission, edited by C. Wagemans (CRC Press, Boca Raton, 1991) Chapt. II.

  17. G.N. Smirenkin, IAEA Report INDC(CCP)-359 (1993).

  18. K. Rutz, J. Maruhn, P.G. Reinhard, W. Greiner, Nucl. Phys. A 590, 680 (1995).

    Article  Google Scholar 

  19. A.V. Affanassyev, P. Ring, Acta Phys. Hung. 13, 139 (2001).

    Article  Google Scholar 

  20. M. Warda, J.L. Egido, L.M. Robledo, K. Pomorski, Phys. Rev. C 66, 014310 (2002).

    Article  Google Scholar 

  21. H. Flocard, P. Quentin, A.K. Kerman, D. Vautherin, Nucl. Phys. A 203, 433 (1973).

    Article  Google Scholar 

  22. D. Samsœn, P. Quentin, J. Bartel, Nucl. Phys. A 652, 34 (1999).

    Article  Google Scholar 

  23. H. Krivine, O. Bohigas, J. Treiner, Nucl. Phys. A 366, 155 (1980).

    Article  Google Scholar 

  24. M. Beiner, H. Flocard, N. Van Giai, P. Quentin, Nucl. Phys. A 238, 29 (1975).

    Article  Google Scholar 

  25. M. Brack, C. Guet, H.-B. Håkansson, Phys. Rep. 123, 275 (1985).

    Article  Google Scholar 

  26. J. Libert, M. Meyer, P. Quentin, Phys. Rev. C 25, 586 (1982).

    Article  Google Scholar 

  27. N. Pillet, P. Quentin, J. Libert, Nucl. Phys. A 697, 141 (2002).

    Article  MATH  Google Scholar 

  28. M. Meyer, J. Libert, P. Quentin, Phys. Lett. B 95, 175 (1980).

    Article  Google Scholar 

  29. H. Laftchiev, D. Samsœn, P. Quentin, J. Piperova, Eur. Phys. J. A 12, 155 (2001).

    Article  Google Scholar 

  30. T.L. Ha, P. Quentin, D. Strottman, in preparation.

  31. S.J. Krieger, P. Bonche, H. Flocard, P. Quentin, M.S. Weiss, Nucl. Phys. A 517, 275 (1990).

    Article  Google Scholar 

  32. H.J. Lipkin, Ann. Phys. (N.Y.) 9, 272 (1960).

    MATH  Google Scholar 

  33. I. Kelson, Y. Shoshani, Phys. Lett. B 40, 58 (1972).

    Article  Google Scholar 

  34. S.D. Belyaev, Nucl. Phys. 24, 322 (1961), and references quoted therein.

    Article  Google Scholar 

  35. D.W.L. Sprung, S.G. Lie, M. Valliéres, P. Quentin, Nucl. Phys. A 326, 37 (1979).

    Article  Google Scholar 

  36. D.J. Thouless, J.G. Valatin, Nucl. Phys. 31, 211 (1962).

    Article  MATH  Google Scholar 

  37. J. Libert, M. Girod, J.P. Delaroche, Phys. Rev. C 60, 054301 (1999).

    Article  Google Scholar 

  38. P. Quentin, H. Lafchiev, D. Samsœn, I.N. Mikhaïlov, Phys. Rev. C 69, 054315 (2004).

    Article  Google Scholar 

  39. M.J. Giannoni, P. Quentin, Phys. Rev. C 21, 2076 (1980).

    Article  Google Scholar 

  40. P. Ring, P. Schuck, in The Nuclear Many-Body Problem (Springer Verlag, 1980) Chapt. 11.

  41. W.H. Bassichis, A.K. Kerman, J.P. Svenne, Phys. Rev. 160, 746 (1967).

    Article  Google Scholar 

  42. H. Flocard, P. Quentin, D. Vautherin, M. Veneroni, A.K. Kerman, Nucl. Phys. A 231, 176 (1974).

    Article  Google Scholar 

  43. P. Reiter et al. , Phys. Rev. Lett. 82, 509 (1999).

    Google Scholar 

  44. J.L. Egido, L.M. Robledo, Phys. Rev. Lett. 85, 1198 (2000).

    Article  Google Scholar 

  45. T. Duguet, P. Bonche, P.H. Heenen, Nucl. Phys. 679, 427 (2001).

    Article  Google Scholar 

  46. H. Laftchiev, D. Samsœn, P. Quentin, J. Piperova, Eur. Phys. J. A 12, 155 (2001).

    Article  Google Scholar 

  47. D. Hoffman, Nucl. Phys. A 502, 21c (1989).

    Article  Google Scholar 

  48. H.X. Zhang, T.R. Yeh, H. Lancman, Phys. Rev. C 34, 1397 (1986).

    Article  Google Scholar 

  49. J. Blons, B. Fabbro, C. Mazur, D. Paya, M. Ribrag, Y. Patin, Nucl. Phys. A 477, 231 (1988).

    Article  Google Scholar 

  50. P.H. Heenen, private communication.

  51. P. Bonche, S.J. Krieger, M.S. Weiss, J. Dobaczewski, H. Flocard, P.-H. Heenen, Phys. Rev. Lett. 66, 871 (1991).

    Article  Google Scholar 

  52. I.N. Mikhaïlov, P. Quentin, Phys. Lett. B 462, 7 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bonneau.

Additional information

Communicated by A. Molinari

Received: 20 June 2003, Revised: 9 March 2004, Published online: 21 September 2004

PACS:

21.60.Jz Hartree-Fock and random-phase approximations - 24.75. + i General properties of fission

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonneau, L., Quentin, P. & Samsœn, D. Fission barriers of heavy nuclei within a microscopic approach. Eur. Phys. J. A 21, 391–406 (2004). https://doi.org/10.1140/epja/i2003-10224-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2003-10224-x

Keywords

Navigation