Skip to main content
Log in

Evolution of the \(\pi g_{9/2} \otimes \nu h_{11/2}\) configuration in the neutron-rich \(^{110,112}_{\quad\ \; 45}Rh\) and \(^{114,116}_{\quad\ \; 47}Ag\) isotopes

  • OriginalPaper
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

The 110,112 Rh and 114,116 Ag nuclei have been produced as fission fragments in the fusion reaction 18 O+208 Pb at 85 MeV. Their level schemes have been built from gamma-rays detected using the Euroball IV array. High-spin states of these neutron-rich nuclei have been identified for the first time. The yrast structures consist of rotational bands in which the odd proton occupies the \(\pi g_{9/2}\) sub-shell and the odd neutron the \(\nu h_{11/2}\) sub-shell. The evolution of the \(\pi g_{9/2} \otimes \nu h_{11/2}\) band structure is analyzed as a function of the neutron number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.-G. Porquet et al., Eur. Phys. J. A 15, 463 (2002).

    Article  Google Scholar 

  2. I. Hamamoto, Phys. Lett. B 235, 221 (1990).

    Article  Google Scholar 

  3. J. Doring, D. Ulrich, G.D. Johns, M.A. Riley, S.L. Tabor, Phys. Rev. C 59, 71 (1999) and references therein.

    Article  Google Scholar 

  4. J.F. Smith et al., Phys. Lett. B 406, 7 (1997) and references therein.

    Article  MATH  Google Scholar 

  5. Y. Liu et al., Phys. Rev. C 52, 2514 (1995) and references therein.

    Article  Google Scholar 

  6. R. Bengtsson, H. Frisk, F.R. May, J.A. Pinston, Nucl. Phys. A 415, 189 (1984).

    Article  Google Scholar 

  7. A.K. Jain, A. Goel, Phys. Lett. B 277, 233 (1992).

    Article  Google Scholar 

  8. P.B. Semmes, I. Ragnarsson, International Conference on High Spin Physics and Gamma-Soft Nuclei, Pittsburgh, September 1990 (World Scientific, Singapore, 1991) p. 500.

  9. J. Simpson, Z. Phys. A 358, 139 (1997).

    Article  Google Scholar 

  10. I. Deloncle, M.-G. Porquet, M. Dziri-Marcé, Nucl. Instrum. Methods A 357, 150 (1995).

    Article  Google Scholar 

  11. D. Radford, Nucl. Instrum. Methods A 361, 297

    Article  Google Scholar 

  12. M.A.C. Hotchkis et al., Nucl. Phys. A 530, 111 (1991).

    Article  Google Scholar 

  13. M.G. Porquet et al., Acta Phys. Polon. B 27, 179 (1996).

    Google Scholar 

  14. R. Lucas et al., Eur. Phys. J. A 15, 315 (2002).

    Article  Google Scholar 

  15. Ts. Venkova et al., Eur. Phys. J. A 15, 429 (2002).

    Article  Google Scholar 

  16. Ts. Venkova et al., Eur. Phys. J. A 6, 405 (1999).

    Article  Google Scholar 

  17. R.B. Firestone, Table of Isotopes, 8th edition (Wiley, New York, 1996).

  18. G. Lhersonneau et al., Phys. Rev. C 60, 014315 (1999).

    Article  Google Scholar 

  19. J.K. Hwang et al., Phys. Rev. C 57, 2250 (1998).

    Google Scholar 

  20. F.R. Espinoza-Quiñones et al., Phys. Rev. C 52, 104 (1995).

    Article  Google Scholar 

  21. R. Popli, F.A. Rickey, L.E. Samuelson, P.C. Simms, Phys. Rev. C 23, 1085 (1981).

    Article  Google Scholar 

  22. M.-G. Porquet et al., Proton orbitals and rotational structures in the neutron rich \(^{111 -117}Ag\) isotopes, in preparation.

  23. J.K. Hwang et al., Phys Rev. C 65, 054314 (2002).

    Article  Google Scholar 

  24. A.M. Bizzeti-Sona et al., Z. Phys. A 335, 365 (1990).

    Google Scholar 

  25. J. Blachot, Nucl. Data Sheets 97, 597 (2002).

    Article  Google Scholar 

  26. N. Buforn, Eur. Phys. J. A 7, 347 (2000).

    Article  Google Scholar 

  27. M. Houry et al., Eur. Phys. J. A 6, 43 (1999).

    Article  Google Scholar 

  28. R. Krücken et al., Phys. Rev. C 60, 031302 (1999).

    Article  Google Scholar 

  29. X.Q. Zhang et al., Phys. Rev. C 61, 014305 (1999).

    Google Scholar 

  30. M.-G. Porquet et al., Evolution of the \(\pi g_{9/2} -(\nu h_{11/2})^2\) multiplet in the neutron rich \(^{49}In\) isotopes: Evidence of the gradual filling of a sub-shell, to be submitted to Eur. Phys. J. A.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-G. Porquet.

Additional information

Communicated by D. Schwalm

Received: 20 March 2003, Revised: 8 May 2003, Published online: 23 September 2003

PACS:

21.60.Ev Collective models - 23.20.Lv \(\gamma\) transitions and level energies - 25.85.Ge Charged-particle-induced fission - 27.60.+j \(90\leq A\leq 149\)

A. Astier: Present address: CSNSM, IN2P3-CNRS and Université Paris-Sud, 91405 Orsay, France.

L. Donadille: Present address: CEA/Saclay, DSM/DAPNIA/SPhN, 91191 Gif-sur-Yvette Cedex, France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porquet, MG., Venkova, T., Astier, A. et al. Evolution of the \(\pi g_{9/2} \otimes \nu h_{11/2}\) configuration in the neutron-rich \(^{110,112}_{\quad\ \; 45}Rh\) and \(^{114,116}_{\quad\ \; 47}Ag\) isotopes. Eur. Phys. J. A 18, 25–30 (2003). https://doi.org/10.1140/epja/i2003-10062-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2003-10062-x

Keywords

Navigation