Skip to main content
Log in

Mechanism of Polarization Production by Means of the Tilted-Foil Technique Studied Using Beta-Radioactive Nuclei

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

In order to disclose the polarization mechanism of the tilted-foil technique, systematic experimental studies were performed through direct observations of the nuclear polarization of short-lived beta-emitters. The present studies concentrated on the mechanisms of the following processes: (1) production of atomic polarization in the beam–tilted-foil interaction, (2) polarization transfer between an atom and a nucleus, and (3) enhancement of nuclear polarization by the beam multi-tilted-foil interaction. The present results have confirmed the plausibility of a previous model in which the atomic-polarization process in the tilted-foil technique is attributed to the right–left asymmetry of the electron-capture process at the final surface of a tilted foil. The enhancement effect of nuclear polarization by the multi-tilted-foil technique could be consistently explained by a model proposed by Goldring and Niv. Further information on atomic processes is required to make a definite statement on hyperfine interactions and atomic configurations, which contribute to polarization transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Minamisono, T., Hyp. Interact. 21 (1985), 103.

    Google Scholar 

  2. Nakai, K., Hyp. Interact. 21 (1985), 1.

    Google Scholar 

  3. Fukuda, M., Izumikawa, T., Ohtsubo, T., Tanigaki, M., Fukuda, S., Nakayama, Y., Matsuta, K., Nojiri, Y. and Minamisono, T., Phys. Lett. B 307 (1993), 278.

    Google Scholar 

  4. Minamisono, T., Ohtsubo, T., Minami, I., Fukuda, S., Kitagawa, A., Fukuda, M., Matsuta, K., Nojiri, Y., Takeda, S., Sagawa, H. and Kitagawa, H., Phys. Rev. Lett. 69 (1992), 2058.

    Google Scholar 

  5. Matsuta, K., Ozawa, A., Nojiri, Y., Minamisono, T., Fukuda, M., Kitagawa, A., Momota, S., Ohtsubo, T., Matsuo, Y., Takechi, H., Fukuda, S., Minami, I., Sugimoto, K., Tanihata, I., Omata, K., Alonso, J. R., Krebs, G. F. and Symons, T. J. M., Phys. Lett. B 281 (1992), 214.

    Google Scholar 

  6. Okuno, H., Asahi, K., Sato, H., Ueno, H., Kura, J., Adachi, M., Nakamura, T., Kubo, T., Inabe, N., Yoshida, A., Ichihara, T., Kobayashi, Y., Ohkubo, T., Iwamoto, M., Ambe, F., Shimoda, T., Miyatake, H., Takahashi, N., Nakamura, J., Beaumel, D., Morrissey, D. J., Schimidt-Ott, W.-D.and Ishihara, M., Phys. Lett. B 335 (1994), 29.

    Google Scholar 

  7. Minamisono, T., Kitagawa, A., Matsuta, K. and Nojiri, Y., Hyp. Interact. 78 (1993), 77.

    Google Scholar 

  8. Minamisono, T. et al., Phys. Rev. Lett. 80 (1998), 4132.

    Google Scholar 

  9. Nojiri, Y., Momota, S., Yanagisawa, T., Tanaka, M.-B., Fukuda, M., Matsuta, K. and Minamisono, T., Hyp. Interact. 78 (1993), 567.

    Google Scholar 

  10. Ohtsubo, T., Nakayama, Y., Minami, I., Tanigaki, M., Fukuda, S., Kitagawa, A., Fukuda, M., Matsuta, K., Nojiri, Y., Akai, H. and Minamisono, T., Hyp. Interact. 80 (1993), 1051.

    Google Scholar 

  11. Andrä, H. J., Phys. Scr. 9 (1974), 257.

    Google Scholar 

  12. Berry, H. G. and Hass, M., Ann. Rev. Nucl. Part Sci. 32 (1982), 1.

    Google Scholar 

  13. Fano, U. and Macek, J. H., Rev. Mod. Phys. 45 (1973), 553.

    Google Scholar 

  14. Ellis, D. G., J. Opt. Soc. Amer. 63 (1973), 1232.

    Google Scholar 

  15. Berry, H. G., Curtis, L. J., Ellis, D. G. and Schectman, R. M., Phys. Rev. Lett. 32 (1974), 751.

    Google Scholar 

  16. Berry, H. G., Curtis, L. J. and Schectman, R.M., Phys. Rev. Lett. 34 (1975), 509.

    Google Scholar 

  17. Church, D. A. and Michel, M. C., Phys. Lett. A 55 (1975), 167.

    Google Scholar 

  18. Berry, H. G., In: I. A. Sellin and D. J. Pegg (eds), Beam Foil Spectroscopy, Vol. 2, Plenum Press, New York, 1976, p. 755.

    Google Scholar 

  19. Huldt, S., Curtis, L. J., Denne, B., Engström, L., Ishii, K. and Martinson, I., Phys. Lett. A 66 (1978), 103.

    Google Scholar 

  20. Tolk, N. H., Feldman, L. C., Kraus, J. S., Tully, J. C., Hass, M., Niv, Y. and Temmer, G. M., Phys. Rev. Lett. 47 (1981), 487.

    Google Scholar 

  21. Berry, H. G., Curtis, L. J., Ellis, D. G. and Schectman, R. M., Phys. Rev. Lett. 35 (1975), 274.

    Google Scholar 

  22. Andrä, H. J., Plöhn, H. J., Gaupp, A. and Fröhling, R., Z. Phys. A 281 (1977), 15.

    Google Scholar 

  23. Lu, F. Q., Tang, J. Y. and Deutch, B. I., Phys. Rev. C 25(1982), 1476.

    Google Scholar 

  24. Nojiri, Y. and Deutch, B. I., Phys. Rev. Lett. 51 (1983), 180.

    Google Scholar 

  25. Dafni, E., Hass, M., Bertschat, H. H., Broude, C., Davidovsky, F., Goldring, G. and Lesser, P. M. S., Phys. Rev. Lett. 50 (1983), 1652.

    Google Scholar 

  26. Hass, M., Dafni, D., Bertschat, H. H., Broude, C., Davidovsky, F. D., Goldring, G. and Lesser, P. M. S., Nucl. Phys. A 414 (1984), 316.

    Google Scholar 

  27. Sugimoto, K., Tanabe, T., Hattori, T., Haga, K., Shikazono, N. and Ichimura, J., INS Ann. Rep. Univ. of Tokyo (1983).

  28. Ohsumi, H., Ishihara, M., Kohmoto, S., Asahi, K., Sugimoto, K., Tanabe, T., Hattori, T., Mamagaki, H. and Haga, K., J. Phys. Soc. Jap. 55 (1986), 1088.

    Google Scholar 

  29. Goldring, G. and Niv, Y., Hyp. Interact. 21 (1985), 209.

    Google Scholar 

  30. Hattori, T., Kinoshita, H., Suzuki, H., Kohmoto, S., Ishihara, M. and Ohsumi, H., Nucl. Instr. Meth. B 33 (1988), 244.

    Google Scholar 

  31. Berry, H. G., Bhardwaj, S. N., Curtis, L. J. and Schectman, R.M., Phys. Lett. A 50 (1974), 59.

    Google Scholar 

  32. Herman, R. M., Phys. Rev. Lett. 35 (1975), 1626.

    Google Scholar 

  33. Schröder, H. and Kupfer, E., Z. Phys. A 279 (1976), 13.

    Google Scholar 

  34. Burgdörfer, J., Gabriel, H. and Schröder, H., Z. Phys. A 295 (1980), 7.

    Google Scholar 

  35. Eck, T. G., Phys. Rev. Lett. 33 (1974), 1055.

    Google Scholar 

  36. Band, Y. B., Phys. Rev. Lett. 35 (1975), 1272.

    Google Scholar 

  37. Lombardi, M., Phys. Rev. Lett. 35 (1975), 1172.

    Google Scholar 

  38. Lewis, E. L. and Silver, J. D., J. Phys. B 8 (1975), 2697.

    Google Scholar 

  39. Band, Y. B., Phys. Rev. A 13 (1976), 2061.

    Google Scholar 

  40. Trubnikov, B. A. and Yavlinskii, Yu. N., Sov. Phys. JETP 25 (1967), 1089.

    Google Scholar 

  41. Browne, E. and Firestone, R. B., In: Table of Radioactive Isotopes, Wiley-Interscience Pub., 1986.

  42. Raghaban, P., Atomic Data and Nuclear Data Table 42 (1989), 189.

    Google Scholar 

  43. Minamisono, T., Nojiri, Y., Matsuta, K., Takeyama, K., Kitagawa, A., Ohtsubo, T., Ozawa, A. and Izumi, M., Nucl. Phys. A 516 (1990), 365.

    Google Scholar 

  44. Pfeiffer L. and Madansky, L., Phys. Rev. 163 (1967), 999.

    Google Scholar 

  45. Stöckmann, H.-J., Ackermann, H., Dubbers, D., Grupp M. and Heitjans, P., Z. Phys. 269 (1974), 47.

    Google Scholar 

  46. Takayanagi, K., In: Denshi·genshi·bunshi no syohtotsu, Baifu-kan Pub., Tokyo, 1972, p. 117.

    Google Scholar 

  47. Tawara, H., Kato, T. and Nakai, Y., Inst. of Plasma Phys. Report IPPJ-AM-28, 1983.

  48. Ozawa, A., Momota, S., Kitagawa, A., Matsuo, Y., Takahashi, Y., Sakamoto, M., Matsuta, K., Nojiri, Y., Minamisono T. and Nagasawa, T., Hyp. Interact. 61 (1990), 1383.

    Google Scholar 

  49. Davidson, J., Phys. Rev. A 12 (1975), 1350.

    Google Scholar 

  50. Weise, W. L., Smith, M. W. and Glennon, B. M., In: Atomic Transition Probabilities, National Standard Reference Data System, 1966.

  51. Fraga, S., Karwowski J. and Saxena, K. M. S., In: Handbook of Atomic Data, Elsevier Scientific Pub., 1976.

  52. Nojiri, Y. and Deutch, B. I., Hyp. Interact. 21 (1985), 197.

    Google Scholar 

  53. Stoner Jr., J.O. and Bashkin, S., In: Proc. Int. Nuclear Target Development Soc., Los Alamos, 1977.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Momota, S., Nojiri, Y., Fukuda, M. et al. Mechanism of Polarization Production by Means of the Tilted-Foil Technique Studied Using Beta-Radioactive Nuclei. Hyperfine Interactions 141, 513–548 (2002). https://doi.org/10.1023/A:1022465916449

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022465916449

Navigation