Skip to main content
Log in

Binding energies of nuclei and their density distributions in a nonlocal extended Thomas-Fermi approximation

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Basic properties of the ground states of spherical nuclei are investigated in a nonlocal extended Thomas-Fermi approximation under the assumption of Skyrme forces. It is shown that, for nuclei occurring near the β-stability line, the binding energies, the root-mean-square radii, and the density distributions found on this basis agree well with experimental data. Binding energies, root-mean-square radii, and density distributions are also calculated for the ground states of nuclei lying far off the β-stability line and for superheavy elements. For the proton, the neutron, and the total particle density, the thickness of the diffuse layer is investigated as a function of the number of neutrons in tin isotopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. H. R. Skyrme, Nucl. Phys. 9, 635 (1959).

    Google Scholar 

  2. D. Vatherin and D. Brink, Phys. Rev. C 5, 626 (1972).

    ADS  Google Scholar 

  3. M. Beiner, H. Flocard, N. V. Giai, and P. Quentin, Nucl. Phys. A 238, 29 (1975).

    ADS  Google Scholar 

  4. Nguyen Van Giai and N. Sagawa, Nucl. Phys. A 371, 1 (1981).

    ADS  Google Scholar 

  5. J. Bartel, P. Quentin, M. Brack, et al., Nucl. Phys. A 386, 79 (1982).

    ADS  Google Scholar 

  6. J. Dobaczewski, H. Flocard, and J. Treiner, Nucl. Phys. A 422, 103 (1984).

    ADS  Google Scholar 

  7. F. Tondeur, M. Brack, M. Farine, and J. M. Pearson, Nucl. Phys. A 420, 297 (1984).

    ADS  Google Scholar 

  8. E. Chabanat, PhD Thesis (Lyon, 1995); E. Chabanat, P. Bonche, P. Haensel, et al., Nucl. Phys. A 635, 231 (1998).

    ADS  Google Scholar 

  9. B. I. Barts, Yu. L. Bolotin, E. V. Inopin, and V. Yu. Gonchar, Hartree-Fock Method in Nuclear Theory (Naukova Dumka, Kiev, 1982).

    Google Scholar 

  10. P.-G. Reinhard, D. J. Dean, W. Nazarewicz, et al., Phys. Rev. C 60, 014316 (1999).

    Google Scholar 

  11. V. M. Strutinsky, Nucl. Phys. A 95, 420 (1967); 122, 1 (1968).

    ADS  Google Scholar 

  12. Z. Patyk, A. Baran, J. F. Berger, et al., Phys. Rev. C 59, 704 (1999).

    Article  ADS  Google Scholar 

  13. A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Nauka, Moscow, 1983, 2nd ed.; Interscience, New York, 1967).

    Google Scholar 

  14. É. E. Sapershtein and V. A. Khodel', Izv. Akad. Nauk SSSR, Ser. Fiz. 47, 907 (1983).

    Google Scholar 

  15. M. Brack, C. Guet, and H.-B. Hakanson, Phys. Rep. 123, 275 (1985).

    Article  ADS  Google Scholar 

  16. M. Brack and R. K. Bhaduri, Semiclassical Physics (Addison-Wesley, Reading, 1997).

    Google Scholar 

  17. M. Brack, Rev. Mod. Phys. 65, 677 (1993).

    Article  ADS  Google Scholar 

  18. V. M. Kolomiets, Local-Density Approximation in Atomic and Nuclear Physics (Naukova Dumka, Kiev, 1990).

    Google Scholar 

  19. R. Smolanczuk, J. Skalski, and A. Sobiczewski, Phys. Rev. C 52, 1871 (1995); R. Smolanczuk, Phys. Rev. C 56, 812 (1997).

    Article  ADS  Google Scholar 

  20. Yu. Ts. Oganessian et al., Phys. Rev. Lett. 83, 3154 (1999); Yad. Fiz. 63, 1769 (2000) [Phys. At. Nucl. 63, 1679 (2000)]; Yad. Fiz. 64, 1427 (2001) [Phys. At. Nucl. 64, 1349 (2001)].

    Article  ADS  Google Scholar 

  21. G. Münzenberg, Rep. Prog. Phys. 51, 57 (1988); S. Hofmann, Rep. Prog. Phys. 61, 373 (1998); G. N. Flerov, I. Zvara, G. M. Ter-Akopyan, et al., Fiz. Élem. Chastits At. Yadra 22, 931 (1991) [Sov. J. Part. Nucl. 22, 453 (1991)].

    ADS  Google Scholar 

  22. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  23. Liviu Gr. Iharu, Numerical Methods for Differential Equations and Applications (Editura Academiei, Bucharest, 1984).

    Google Scholar 

  24. G. Audi, O. Bersillon, J. Blachot, and A. H. Wapstra, Nucl. Phys. A 624, 1 (1997); G. Audi and A. H. Wapstra, Nucl. Phys. A 595, 409 (1995).

    ADS  Google Scholar 

  25. P. Moller, J. R. Nix, and K.-L. Kratz, At. Data Nucl. Data Tables 66, 131 (1997); P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995).

    ADS  Google Scholar 

  26. H. De Vries, C. W. De Jager, and C. De Vries, At. Data Nucl. Data Tables 36, 495 (1987).

    ADS  Google Scholar 

  27. M. Chartier et al., Phys. Rev. Lett. 77, 2400 (1996).

    Article  ADS  Google Scholar 

  28. B. Blank et al., Phys. Rev. Lett. 84, 1116 (2000).

    Article  ADS  Google Scholar 

  29. B. A. Brown, Phys. Rev. C 58, 220 (1998).

    Article  ADS  Google Scholar 

  30. G. A. Lalazissis, D. Vretenar, and P. Ring, Phys. Rev. C 57, 2294 (1998).

    Article  ADS  Google Scholar 

  31. J. Terasaki, P.-H. Heenen, H. Flocard, and P. Bonche, Nucl. Phys. A 600, 371 (1996).

    ADS  Google Scholar 

  32. W. D. Myers and W. J. Swiatecki, Nucl. Phys. A 601, 141 (1996).

    ADS  Google Scholar 

  33. J. Dobaczewski et al., Phys. Rev. C 53, 2809 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Yadernaya Fizika, Vol. 65, No. 5, 2002, pp. 847–855.

Original Russian Text Copyright © 2002 by Denisov, Nesterov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denisov, V.Y., Nesterov, V.A. Binding energies of nuclei and their density distributions in a nonlocal extended Thomas-Fermi approximation. Phys. Atom. Nuclei 65, 814–823 (2002). https://doi.org/10.1134/1.1481472

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1481472

Keywords

Navigation